第一批

时间:2017-12-10 22:01:27

标签: python python-3.x tensorflow neural-mt

摘要和测试用例

核心问题是Tensorflow会抛出一个不是第一个批次的OOM分配,正如我所料。因此,我认为存在内存泄漏,因为每批后显然没有释放所有内存。

num_units: 50, batch_size: 1000; fails OOM (gpu) before 1st batch as expected
num_units: 50, batch_size: 800, fails OOM (gpu) before 1st batch as expected
num_units: 50, batch_size: 750; fails OOM (gpu) after 10th batch (???)
num_units: 50, batch_size: 500; fails OOM (gpu) after 90th batch (???)
num_units: 50, batch_size: 300; fails OOM (gpu) after 540th batch (???)
num_units: 50, batch_size: 200; computer freezes after around 900 batches with 100% ram use
num_units: 50, batch_size: 100; passes 1 epoch -- may fail later (unknown)

解释

基本上,它在批量大小为144时运行500批次,然后在第145批次失败,这看起来很奇怪。如果它不能为第145批分配足够的内存,为什么它应该适用于第144批?行为可以复制。

请注意,每个批次的大小各不相同,因为每个批次的维度为[BATCH_SIZE, MAX_SEQUENCE_LENGTH],并且根据采样的序列,序列长度会有所不同,但程序不会失败最大批次;它稍后会在较小的一个上失败。因此,我得出结论,单个超大批量不会导致内存错误;它似乎是一个内存泄漏。

批量较大时,程序会提前失败;如果批量较小,则稍后会失败。

完整错误在这里:

  Traceback (most recent call last):
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1323, in _do_call
    return fn(*args)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1302, in _run_fn
    status, run_metadata)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[500,80]
     [[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]]
     [[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/nave01314/IdeaProjects/tf-nmt/main.py", line 89, in <module>
    _ = sess.run([update_step])
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 889, in run
    run_metadata_ptr)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1120, in _run
    feed_dict_tensor, options, run_metadata)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1317, in _do_run
    options, run_metadata)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1336, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[500,80]
     [[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]]
     [[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]]

Caused by op 'decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul', defined at:
  File "/home/nave01314/IdeaProjects/tf-nmt/main.py", line 49, in <module>
    outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py", line 309, in dynamic_decode
    swap_memory=swap_memory)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2819, in while_loop
    result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2643, in BuildLoop
    pred, body, original_loop_vars, loop_vars, shape_invariants)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2593, in _BuildLoop
    body_result = body(*packed_vars_for_body)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py", line 254, in body
    decoder_finished) = decoder.step(time, inputs, state)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/basic_decoder.py", line 138, in step
    cell_outputs, cell_state = self._cell(inputs, state)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py", line 290, in __call__
    return base_layer.Layer.__call__(self, inputs, state, scope=scope)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 618, in __call__
    outputs = self.call(inputs, *args, **kwargs)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py", line 567, in call
    array_ops.concat([inputs, h], 1), self._kernel)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 1993, in matmul
    a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 2532, in _mat_mul
    name=name)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3081, in create_op
    op_def=op_def)
  File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1528, in __init__
    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[500,80]
     [[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]]
     [[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]]

代码段(来自models.py)

import tensorflow as tf
from tensorflow.python.layers import core as layers_core


class NMTModel:
    def __init__(self, hparams, iterator, mode):
        source, target_in, target_out, source_lengths, target_lengths = iterator.get_next()
        true_batch_size = tf.size(source_lengths)

        # Lookup embeddings
        embedding_encoder = tf.get_variable("embedding_encoder", [hparams.src_vsize, hparams.src_emsize])
        encoder_emb_inp = tf.nn.embedding_lookup(embedding_encoder, source)
        embedding_decoder = tf.get_variable("embedding_decoder", [hparams.tgt_vsize, hparams.tgt_emsize])
        decoder_emb_inp = tf.nn.embedding_lookup(embedding_decoder, target_in)

        # Build and run Encoder LSTM
        encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(hparams.num_units)
        encoder_outputs, encoder_state = tf.nn.dynamic_rnn(encoder_cell, encoder_emb_inp, sequence_length=source_lengths, dtype=tf.float32)

        # Build and run Decoder LSTM with Helper and output projection layer
        decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(hparams.num_units)
        projection_layer = layers_core.Dense(hparams.tgt_vsize, use_bias=False)
        # if mode is 'TRAIN' or mode is 'EVAL':  # then decode using TrainingHelper
        #     helper = tf.contrib.seq2seq.TrainingHelper(decoder_emb_inp, sequence_length=target_lengths)
        # elif mode is 'INFER':  # then decode using Beam Search
        #     helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding_decoder, tf.fill([true_batch_size], hparams.sos), hparams.eos)
        helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding_decoder, tf.fill([true_batch_size], hparams.sos), hparams.eos)
        decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper, encoder_state, output_layer=projection_layer)
        outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=tf.reduce_max(target_lengths))
        logits = outputs.rnn_output

        if mode is 'TRAIN' or mode is 'EVAL':  # then calculate loss
            crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_out, logits=logits)
            target_weights = tf.sequence_mask(target_lengths, maxlen=tf.shape(target_out)[1], dtype=logits.dtype)
            self.loss = tf.reduce_sum((crossent * target_weights)) / tf.cast(true_batch_size, tf.float32)

        if mode is 'TRAIN':  # then calculate/clip gradients, then optimize model
            params = tf.trainable_variables()
            gradients = tf.gradients(self.loss, params)
            clipped_gradients, _ = tf.clip_by_global_norm(gradients, hparams.max_gradient_norm)

            optimizer = tf.train.AdamOptimizer(hparams.l_rate)
            self.update_step = optimizer.apply_gradients(zip(clipped_gradients, params))

        if mode is 'EVAL' or mode is 'INFER':  # then allow access to input/output tensors to printout
            self.src = source
            self.tgt = target_out
            self.preds = tf.argmax(logits, axis=2)

        # Designate a saver operation
        self.saver = tf.train.Saver(tf.global_variables())

    def train(self, sess):
        return sess.run([self.update_step, self.loss])

    def eval(self, sess):
        return sess.run([self.loss, self.src, self.tgt, self.preds])

    def infer(self, sess):
        return sess.run([self.src, self.tgt, self.preds])  # tgt should not exist (temporary debugging only)

完整代码(非常类似于NMT教程,简化)。

模型代码在models.py中,迭代器代码在data_pipeline.py中,main是main.py

https://github.com/nave01314/tf-nmt

2 个答案:

答案 0 :(得分:1)

tf.GraphDef协议缓冲区存在内部2GB限制,在大多数情况下会引发OOM错误。

输入张量[BATCH_SIZE, MAX_SEQUENCE_LENGTH]可能达到该限制。只需尝试更小的批次。

答案 1 :(得分:0)

批次的长度可变,因此较小的批次可以在没有OOM的情况下通过,而较大的批次可能不会。

根据您的实施情况,您可以打印出批次长度(批次的最大长度,以便所有其他序列填充到该长度),并确定这是否是导致您的问题。

要解决此问题,请降低批处理大小,或设置迭代器的最大长度。

这不是内存泄漏。