LinearRegression():R2使用cross_val_score评分 - 奇怪的结果

时间:2017-12-08 22:21:34

标签: python scikit-learn linear-regression scoring

我使用cross_val_score()函数来计算我的拟合系数R2。 这是我的代码:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
X = data.iloc[:,0:13]
y = data.iloc[:,13]
lin = LinearRegression()

MSE = cross_val_score(lin,X,y,scoring = 'neg_mean_squared_error',cv = 10)
MSE
array([  -9.28694671,  -14.15128316,  -14.07360615,  -35.20692433,
    -31.88511666,  -19.83587796,   -9.94726918, -168.37537954,
    -33.32974507,  -10.96041068])
MSE.mean()
-34.705255944525462

R2= cross_val_score(lin,X,y,cv = 10)
R2
array([ 0.73376082,  0.4730725 , -1.00631454,  0.64113984,  0.54766046,
    0.73640292,  0.37828386, -0.12922703, -0.76843243,  0.4189435 ])
R2.mean()
0.20252899006052702

我发现这些结果非常奇怪,特别是R2结果:

  • 0< R2< 1?
  • 我发现非常奇怪的是,均方结果和R2得分非常分散"。

我执行相同的回归任务并使用" Rapidminer"计算得分。我得到更多"逻辑"结果:

  • 均方误差= 24.218 +/- 10.413
  • R2 = 0.848 +/- 0.066

注意:我确切地说,在使用Python和Rapidminer时,我得到相同的系数!!!!!!

他们在sklearn中有些错误吗? 有人可以用Python解释我这些奇怪的得分结果吗?

在这里,您可以找到我的训练数据集(.csv文件)的链接,以便复制我观察到的行为:https://1drv.ms/u/s!Am7xh5YMVeT6gf8NMS9fZgpOpe6kbw

0 个答案:

没有答案