我希望我的Spark应用程序从DynamoDB中读取表,执行操作,然后将结果写入DynamoDB。
现在,我可以将DynamoDB中的表作为hadoopRDD
读入Spark,并将其转换为DataFrame。但是,我必须使用正则表达式从AttributeValue
中提取值。有更好/更优雅的方式吗?在AWS API中找不到任何内容。
package main.scala.util
import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.rdd.RDD
import scala.util.matching.Regex
import java.util.HashMap
import com.amazonaws.services.dynamodbv2.model.AttributeValue
import org.apache.hadoop.io.Text;
import org.apache.hadoop.dynamodb.DynamoDBItemWritable
/* Importing DynamoDBInputFormat and DynamoDBOutputFormat */
import org.apache.hadoop.dynamodb.read.DynamoDBInputFormat
import org.apache.hadoop.dynamodb.write.DynamoDBOutputFormat
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.io.LongWritable
object Tester {
// {S: 298905396168806365,}
def extractValue : (String => String) = (aws:String) => {
val pat_value = "\\s(.*),".r
val matcher = pat_value.findFirstMatchIn(aws)
matcher match {
case Some(number) => number.group(1).toString
case None => ""
}
}
def main(args: Array[String]) {
val spark = SparkSession.builder().getOrCreate()
val sparkContext = spark.sparkContext
import spark.implicits._
// UDF to extract Value from AttributeValue
val col_extractValue = udf(extractValue)
// Configure connection to DynamoDB
var jobConf_add = new JobConf(sparkContext.hadoopConfiguration)
jobConf_add.set("dynamodb.input.tableName", "MyTable")
jobConf_add.set("dynamodb.output.tableName", "MyTable")
jobConf_add.set("mapred.output.format.class", "org.apache.hadoop.dynamodb.write.DynamoDBOutputFormat")
jobConf_add.set("mapred.input.format.class", "org.apache.hadoop.dynamodb.read.DynamoDBInputFormat")
// org.apache.spark.rdd.RDD[(org.apache.hadoop.io.Text, org.apache.hadoop.dynamodb.DynamoDBItemWritable)]
var hadooprdd_add = sparkContext.hadoopRDD(jobConf_add, classOf[DynamoDBInputFormat], classOf[Text], classOf[DynamoDBItemWritable])
// Convert HadoopRDD to RDD
val rdd_add: RDD[(String, String)] = hadooprdd_add.map {
case (text, dbwritable) => (dbwritable.getItem().get("PIN").toString(), dbwritable.getItem().get("Address").toString())
}
// Convert RDD to DataFrame and extract Values from AttributeValue
val df_add = rdd_add.toDF()
.withColumn("PIN", col_extractValue($"_1"))
.withColumn("Address", col_extractValue($"_2"))
.select("PIN","Address")
}
}
stackoverflow和其他地方的许多答案仅指向blog post和emr-dynamodb-hadoop github。这些资源都没有实际演示如何写入DynamoDB。
I tried converting我的DataFrame
至RDD[Row]
未成功。
df_add.rdd.saveAsHadoopDataset(jobConf_add)
将此DataFrame写入DynamoDB的步骤是什么? (如果你告诉我如何控制overwrite
vs putItem
;)
注意:df_add
与DynamoDB中的MyTable
具有相同的架构。
编辑:我按照this answer提出的Using Spark SQL for ETL指向此帖的建议:
// Format table to DynamoDB format
val output_rdd = df_add.as[(String,String)].rdd.map(a => {
var ddbMap = new HashMap[String, AttributeValue]()
// Field PIN
var PINValue = new AttributeValue() // New AttributeValue
PINValue.setS(a._1) // Set value of Attribute as String. First element of tuple
ddbMap.put("PIN", PINValue) // Add to HashMap
// Field Address
var AddValue = new AttributeValue() // New AttributeValue
AddValue.setS(a._2) // Set value of Attribute as String
ddbMap.put("Address", AddValue) // Add to HashMap
var item = new DynamoDBItemWritable()
item.setItem(ddbMap)
(new Text(""), item)
})
output_rdd.saveAsHadoopDataset(jobConf_add)
然而,现在我得到java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.hadoop.io.Text
尽管遵循了文件......你有什么建议吗?
编辑2 :在Using Spark SQL for ETL上仔细阅读这篇文章:
获得DataFrame后,执行转换以使RDD与DynamoDB自定义输出格式知道如何编写的类型相匹配。自定义输出格式需要包含Text和
DynamoDBItemWritable
类型的元组。
考虑到这一点,下面的代码正是WPS博客文章建议的内容,除了我将output_df
转换为rdd,否则saveAsHadoopDataset
不起作用。现在,我得到了Exception in thread "main" scala.reflect.internal.Symbols$CyclicReference: illegal cyclic reference involving object InterfaceAudience
。我在绳子的尽头!
// Format table to DynamoDB format
val output_df = df_add.map(a => {
var ddbMap = new HashMap[String, AttributeValue]()
// Field PIN
var PINValue = new AttributeValue() // New AttributeValue
PINValue.setS(a.get(0).toString()) // Set value of Attribute as String
ddbMap.put("PIN", PINValue) // Add to HashMap
// Field Address
var AddValue = new AttributeValue() // New AttributeValue
AddValue.setS(a.get(1).toString()) // Set value of Attribute as String
ddbMap.put("Address", AddValue) // Add to HashMap
var item = new DynamoDBItemWritable()
item.setItem(ddbMap)
(new Text(""), item)
})
output_df.rdd.saveAsHadoopDataset(jobConf_add)
答案 0 :(得分:5)
我正在关注"将Spark SQL用于ETL"链接,并发现相同"非法循环引用"例外。 该异常的解决方案非常简单(但需要花费2天才能计算出来),如下所示。关键是在数据帧的RDD上使用map函数,而不是数据帧本身。
val ddbConf = new JobConf(spark.sparkContext.hadoopConfiguration)
ddbConf.set("dynamodb.output.tableName", "<myTableName>")
ddbConf.set("dynamodb.throughput.write.percent", "1.5")
ddbConf.set("mapred.input.format.class", "org.apache.hadoop.dynamodb.read.DynamoDBInputFormat")
ddbConf.set("mapred.output.format.class", "org.apache.hadoop.dynamodb.write.DynamoDBOutputFormat")
val df_ddb = spark.read.option("header","true").parquet("<myInputFile>")
val schema_ddb = df_ddb.dtypes
var ddbInsertFormattedRDD = df_ddb.rdd.map(a => {
val ddbMap = new HashMap[String, AttributeValue]()
for (i <- 0 to schema_ddb.length - 1) {
val value = a.get(i)
if (value != null) {
val att = new AttributeValue()
att.setS(value.toString)
ddbMap.put(schema_ddb(i)._1, att)
}
}
val item = new DynamoDBItemWritable()
item.setItem(ddbMap)
(new Text(""), item)
}
)
ddbInsertFormattedRDD.saveAsHadoopDataset(ddbConf)
答案 1 :(得分:4)
我们为Spark创建了DynamoDB自定义数据源:
https://github.com/audienceproject/spark-dynamodb
它具有许多优雅的功能:
我认为这绝对适合您的用例。如果您可以检查一下并提供反馈,我们将非常乐意。
答案 2 :(得分:0)
这是一个更简单的工作示例。
例如,使用Hadoop RDD从Kinesis Stream写入DynamoDB:-
用于使用Hadoop RDD和不带正则表达式的spark SQL从DynamoDB中读取。
val ddbConf = new JobConf(spark.sparkContext.hadoopConfiguration)
//ddbConf.set("dynamodb.output.tableName", "student")
ddbConf.set("dynamodb.input.tableName", "student")
ddbConf.set("dynamodb.throughput.write.percent", "1.5")
ddbConf.set("dynamodb.endpoint", "dynamodb.us-east-1.amazonaws.com")
ddbConf.set("dynamodb.regionid", "us-east-1")
ddbConf.set("dynamodb.servicename", "dynamodb")
ddbConf.set("dynamodb.throughput.read", "1")
ddbConf.set("dynamodb.throughput.read.percent", "1")
ddbConf.set("mapred.input.format.class", "org.apache.hadoop.dynamodb.read.DynamoDBInputFormat")
ddbConf.set("mapred.output.format.class", "org.apache.hadoop.dynamodb.write.DynamoDBOutputFormat")
//ddbConf.set("dynamodb.awsAccessKeyId", credentials.getAWSAccessKeyId)
//ddbConf.set("dynamodb.awsSecretAccessKey", credentials.getAWSSecretKey)
val data = spark.sparkContext.hadoopRDD(ddbConf, classOf[DynamoDBInputFormat], classOf[Text], classOf[DynamoDBItemWritable])
val simple2: RDD[(String)] = data.map { case (text, dbwritable) => (dbwritable.toString)}
spark.read.json(simple2).registerTempTable("gooddata")
spark.sql("select replace(replace(split(cast(address as string),',')[0],']',''),'[','') as housenumber from gooddata").show(false)