Numpy具有random.choice
功能,允许您从分类分布中进行采样。你会如何在轴上重复这个?为了说明我的意思,这是我目前的代码:
categorical_distributions = np.array([
[.1, .3, .6],
[.2, .4, .4],
])
_, n = categorical_distributions.shape
np.array([np.random.choice(n, p=row)
for row in categorical_distributions])
理想情况下,我想消除for循环。
答案 0 :(得分:1)
这是获取每行随机索引的一种矢量化方式,a
为2D
概率数组 -
(a.cumsum(1) > np.random.rand(a.shape[0])[:,None]).argmax(1)
概括以涵盖2D
数组 -
def random_choice_prob_index(a, axis=1):
r = np.expand_dims(np.random.rand(a.shape[1-axis]), axis=axis)
return (a.cumsum(axis=axis) > r).argmax(axis=axis)
让我们通过运行它超过一百万次验证给定的样本 -
In [589]: a = np.array([
...: [.1, .3, .6],
...: [.2, .4, .4],
...: ])
In [590]: choices = [random_choice_prob_index(a)[0] for i in range(1000000)]
# This should be close to first row of given sample
In [591]: np.bincount(choices)/float(len(choices))
Out[591]: array([ 0.099781, 0.299436, 0.600783])
运行时测试
原始循环方式 -
def loopy_app(categorical_distributions):
m, n = categorical_distributions.shape
out = np.empty(m, dtype=int)
for i,row in enumerate(categorical_distributions):
out[i] = np.random.choice(n, p=row)
return out
更大阵列上的计时 -
In [593]: a = np.array([
...: [.1, .3, .6],
...: [.2, .4, .4],
...: ])
In [594]: a_big = np.repeat(a,100000,axis=0)
In [595]: %timeit loopy_app(a_big)
1 loop, best of 3: 2.54 s per loop
In [596]: %timeit random_choice_prob_index(a_big)
100 loops, best of 3: 6.44 ms per loop