尝试拨打sklearn.metrics.silhouette_samples时出现内存错误。我的用例与此tutorial相同。我在Python 3.5中使用scikit-learn 0.18.1。
对于相关功能silhouette_score,此post建议使用 sample_size 参数,该参数会在调用silhouette_samples之前减小样本量。我不确定下采样是否会产生可靠的结果,所以我不愿意这样做。
我的输入X是一个[107545行x 12列]数据帧,我不会认为它很大,虽然我只有8GB的RAM
sklearn.metrics.silhouette_samples(X, labels, metric=’euclidean’)
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-39-7285690e9ce8> in <module>()
----> 1 silhouette_samples(df_scaled, df['Cluster_Label'])
C:\Users\KE56166\AppData\Local\Enthought\Canopy\edm\envs\User\lib\site-packages\sklearn\metrics\cluster\unsupervised.py in silhouette_samples(X, labels, metric, **kwds)
167 check_number_of_labels(len(le.classes_), X.shape[0])
168
--> 169 distances = pairwise_distances(X, metric=metric, **kwds)
170 unique_labels = le.classes_
171 n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))
C:\Users\KE56166\AppData\Local\Enthought\Canopy\edm\envs\User\lib\site-packages\sklearn\metrics\pairwise.py in pairwise_distances(X, Y, metric, n_jobs, **kwds)
1245 func = partial(distance.cdist, metric=metric, **kwds)
1246
-> 1247 return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
1248
1249
C:\Users\KE56166\AppData\Local\Enthought\Canopy\edm\envs\User\lib\site-packages\sklearn\metrics\pairwise.py in _parallel_pairwise(X, Y, func, n_jobs, **kwds)
1088 if n_jobs == 1:
1089 # Special case to avoid picklability checks in delayed
-> 1090 return func(X, Y, **kwds)
1091
1092 # TODO: in some cases, backend='threading' may be appropriate
C:\Users\KE56166\AppData\Local\Enthought\Canopy\edm\envs\User\lib\site-packages\sklearn\metrics\pairwise.py in euclidean_distances(X, Y, Y_norm_squared, squared, X_norm_squared)
244 YY = row_norms(Y, squared=True)[np.newaxis, :]
245
--> 246 distances = safe_sparse_dot(X, Y.T, dense_output=True)
247 distances *= -2
248 distances += XX
C:\Users\KE56166\AppData\Local\Enthought\Canopy\edm\envs\User\lib\site-packages\sklearn\utils\extmath.py in safe_sparse_dot(a, b, dense_output)
138 return ret
139 else:
--> 140 return np.dot(a, b)
141
142
MemoryError:
计算似乎依赖于在euclidean_distances的调用中崩溃的np.dot。我不是在处理稀缺性,所以也许没有解决方案。计算距离时,我通常使用numpy.linalg.norm(A-B)。这有更好的内存处理吗?
答案 0 :(得分:4)
更新:PR 11135应该在scikit-learn中解决此问题,使帖子的其余部分过时。
您有大约100000 = 1e5个样本,它们是12维空间中的点。 pairwise_distances
方法正在尝试计算它们之间的所有成对距离。即(1e5)** 2 = 1e10距离。每个都是一个浮点数; float64格式占用8个字节的内存。因此距离矩阵的大小为8e10字节,即74.5 GB。
偶尔会在GitHub上报告:#4701,#4197答案粗略地说:它是一个NumPy问题,它无法处理np.dot
的矩阵那个大小。虽然有one comment说
有可能将其分解为子矩阵以进行更高效的内存计算。
实际上,如果不是在开头形成一个巨大的距离矩阵,那么该方法在the loop over labels中计算出相关的块,这将需要更少的内存。
使用source修改方法并不困难,因此不是先计算距离而是先应用二进制掩码,而是首先进行掩码。这就是我在下面所做的。而不是N**2
内存,其中N是样本数,它需要n**2
,其中n是最大簇大小。
如果这看起来很实用,我想它可以通过一些标志添加到Scikit ......但是应该注意这个版本不支持metric='precomputed'
。
import numpy as np
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.utils import check_X_y
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics.cluster.unsupervised import check_number_of_labels
def silhouette_samples_memory_saving(X, labels, metric='euclidean', **kwds):
X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])
le = LabelEncoder()
labels = le.fit_transform(labels)
check_number_of_labels(len(le.classes_), X.shape[0])
unique_labels = le.classes_
n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))
# For sample i, store the mean distance of the cluster to which
# it belongs in intra_clust_dists[i]
intra_clust_dists = np.zeros(X.shape[0], dtype=X.dtype)
# For sample i, store the mean distance of the second closest
# cluster in inter_clust_dists[i]
inter_clust_dists = np.inf + intra_clust_dists
for curr_label in range(len(unique_labels)):
# Find inter_clust_dist for all samples belonging to the same
# label.
mask = labels == curr_label
# Leave out current sample.
n_samples_curr_lab = n_samples_per_label[curr_label] - 1
if n_samples_curr_lab != 0:
intra_distances = pairwise_distances(X[mask, :], metric=metric, **kwds)
intra_clust_dists[mask] = np.sum(intra_distances, axis=1) / n_samples_curr_lab
# Now iterate over all other labels, finding the mean
# cluster distance that is closest to every sample.
for other_label in range(len(unique_labels)):
if other_label != curr_label:
other_mask = labels == other_label
inter_distances = pairwise_distances(X[mask, :], X[other_mask, :], metric=metric, **kwds)
other_distances = np.mean(inter_distances, axis=1)
inter_clust_dists[mask] = np.minimum(inter_clust_dists[mask], other_distances)
sil_samples = inter_clust_dists - intra_clust_dists
sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists)
# score 0 for clusters of size 1, according to the paper
sil_samples[n_samples_per_label.take(labels) == 1] = 0
return sil_samples
答案 1 :(得分:3)
我为使用numba的欧几里德距离投射开发了一种记忆效率和相对快速的解决方案。这适用于相对于输入数据大小的大致恒定的内存,并使用numba的自动并行化。有了24维的300000行数据集(这将需要大约720GB的RAM)。可以根据需要对其进行修改以实现其他距离指标。
from sklearn.utils import check_X_y
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics.cluster.unsupervised import check_number_of_labels
from numba import jit
@jit(nogil=True, parallel=True)
def euclidean_distances_numba(X, Y=None, Y_norm_squared=None):
# disable checks
XX_ = (X * X).sum(axis=1)
XX = XX_.reshape((1, -1))
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is not None:
YY = Y_norm_squared
else:
YY_ = np.sum(Y * Y, axis=1)
YY = YY_.reshape((1,-1))
distances = np.dot(X, Y.T)
distances *= -2
distances += XX
distances += YY
distances = np.maximum(distances, 0)
return np.sqrt(distances)
@jit(parallel=True)
def euclidean_distances_sum(X, Y=None):
if Y is None:
Y = X
Y_norm_squared = (Y ** 2).sum(axis=1)
sums = np.zeros((len(X)))
for i in range(len(X)):
base_row = X[i, :]
sums[i] = euclidean_distances_numba(base_row.reshape(1, -1), Y, Y_norm_squared=Y_norm_squared).sum()
return sums
@jit(parallel=True)
def euclidean_distances_mean(X, Y=None):
if Y is None:
Y = X
Y_norm_squared = (Y ** 2).sum(axis=1)
means = np.zeros((len(X)))
for i in range(len(X)):
base_row = X[i, :]
means[i] = euclidean_distances_numba(base_row.reshape(1, -1), Y, Y_norm_squared=Y_norm_squared).mean()
return means
def silhouette_samples_memory_saving(X, labels, metric='euclidean', **kwds):
X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])
le = LabelEncoder()
labels = le.fit_transform(labels)
check_number_of_labels(len(le.classes_), X.shape[0])
unique_labels = le.classes_
n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))
# For sample i, store the mean distance of the cluster to which
# it belongs in intra_clust_dists[i]
intra_clust_dists = np.zeros(X.shape[0], dtype=X.dtype)
# For sample i, store the mean distance of the second closest
# cluster in inter_clust_dists[i]
inter_clust_dists = np.inf + intra_clust_dists
for curr_label in range(len(unique_labels)):
# Find inter_clust_dist for all samples belonging to the same label.
mask = labels == curr_label
# Leave out current sample.
n_samples_curr_lab = n_samples_per_label[curr_label] - 1
if n_samples_curr_lab != 0:
intra_clust_dists[mask] = euclidean_distances_sum(X[mask, :]) / n_samples_curr_lab
# Now iterate over all other labels, finding the mean
# cluster distance that is closest to every sample.
for other_label in range(len(unique_labels)):
if other_label != curr_label:
other_mask = labels == other_label
other_distances = euclidean_distances_mean(X[mask, :], X[other_mask, :])
inter_clust_dists[mask] = np.minimum(inter_clust_dists[mask], other_distances)
sil_samples = inter_clust_dists - intra_clust_dists
sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists)
# score 0 for clusters of size 1, according to the paper
sil_samples[n_samples_per_label.take(labels) == 1] = 0
return sil_samples
答案 2 :(得分:1)
接受的答案在记忆方面要比官方功能好得多。它从len(data)^ 2到len(cluster)^ 2。如果你有足够大的集群,那么这仍然会造成问题。我写了以下内容,这是~len(数据),但速度非常慢。
import numpy as np
from sklearn.utils import check_X_y
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics.cluster.unsupervised import check_number_of_labels
def silhouette_samples_newest(X, labels, metric='euclidean', **kwds):
X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])
le = LabelEncoder()
labels = le.fit_transform(labels)
unique_labels = le.classes_
check_number_of_labels(len(unique_labels), X.shape[0])
n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))
intra_clust_dists = np.array([np.linalg.norm( X[(labels == labels[i]), :] - point, axis = 1).mean() for i, point in enumerate(X)])
inter_clust_dists = np.array([min([np.linalg.norm( X[(labels == label), :] - point, axis = 1).mean() for label in unique_labels if label!=labels[i]]) for i, point in enumerate(X)])
sil_samples = inter_clust_dists - intra_clust_dists
sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists)
# score 0 for clusters of size 1, according to the paper
sil_samples[n_samples_per_label.take(labels) == 1] = 0
return sil_samples