到目前为止,我使用的是pytorch-caffe-darknet-convert存储库。在克服了许多问题(concat和eltwise图层不可转换)之后,我得到的东西看起来像是一个暗网配置文件:
"******st"
有人知道如何将输出python caffe2darknet.py my_prototxt.txt my_caffemodel.caffemodel new_net_file.cfg new_model.weights
转换为pytorch吗?另外还有另一种将caffe原型文件转换成pytorch的方法吗?
我希望与caffe-tensorflow具有相同的行为
我将发布我的caffe原型文本和下面的输出new_net_file.cfg
作为参考。
my_prototxt:
new_net_file.cfg
(darknet)配置文件:
input: "data"
input_shape {
dim: 1
dim: 240
dim: 144
dim: 240
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
convolution_param {
num_output: 16
pad: 3
pad: 3
pad: 3
kernel_size: 7
kernel_size: 7
kernel_size: 7
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
engine: CUDNN
axis: 1
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "reduction2_1"
type: "Convolution"
bottom: "conv1_1"
top: "reduction2_1"
convolution_param {
num_output: 32
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "conv1_1"
top: "conv2_1"
convolution_param {
num_output: 32
pad: 1
pad: 1
pad: 1
kernel_size: 3
kernel_size: 3
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
engine: CUDNN
axis: 1
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
convolution_param {
num_output: 32
pad: 1
pad: 1
pad: 1
kernel_size: 3
kernel_size: 3
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
axis: 1
}
}
layer {
name: "res2_2"
type: "Eltwise"
bottom: "reduction2_1"
bottom: "conv2_2"
top: "res2_2"
eltwise_param { operation: SUM }
}
layer {
name: "add2_2"
type: "ReLU"
bottom: "res2_2"
top: "res2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "res2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
engine: CUDNN
}
}
[...] # I cropped it here, since file is too lengthy
答案 0 :(得分:0)
您可以使用以下库之一:
<块引用>转化
python caffe2pth_convertor.py \
--prototxt=YOUT_PROTOTXT_PATH \
--caffemodel=YOUT_CAFFEMODEL_PATH \
--pthmodel=OUTPUT_PTHMODEL_PATH
在 Pytorch 中使用模型
from caffe2pth.caffenet import *
net = CaffeNet(YOUT_PROTOTXT_PATH)
net.load_state_dict(torch.load(OUTPUT_PTHMODEL_PATH))