我有两个数据框df1和df2
df1有以下数据(N行)
Time(s) sv-01 sv-02 sv-03 Val1 val2 val3
1339.4 1 4 12 1.6 0.6 1.3
1340.4 1 12 4 -0.5 0.5 1.4
1341.4 1 6 8 0.4 5 1.6
1342.4 2 5 14 1.2 3.9 11
...... ..... .... ... ..
df2有以下数据,其行数多于df1
Time(msec) channel svid value-1 value-2 valu-03
1000 1 2 0 5 1
1000 2 5 1 4 2
1000 3 2 3 4 7
..... .....................................
1339400 1 1 1.6 0.4 5.3
1339400 2 12 0.5 1.8 -4.4
1339400 3 4 -0.20 1.6 -7.9
1340400 1 1 0.3 0.3 1.5
1340400 2 6 2.3 -4.3 1.0
1340400 3 4 2.0 1.1 -0.45
1341400 1 1 2 2.1 0
1341400 2 8 3.4 -0.3 1
1341400 3 6 0 4.1 2.3
.... .... .. ... ... ...
我想要实现的是
1.首先将Time(s)列乘以1000,使其与df2匹配 毫秒柱。
2.在df1 sv 01,02和03是独立的列,但那些sv是 存在于svid下的同一列中。
所以目标是当df1的时间(改变之后)与时间匹配时 df2复制下三个连续行,即复制所有匹配的 那个时刻的线条。
基本上我想在df2时间列中迭代df1的时间 如果匹配复制三个下一行并复制到新的df。
我见过使用pandas merge函数的例子但在我的情况下都有 不同的标题。
感谢。
答案 0 :(得分:1)
我认为您需要加倍boolean indexing
- 首先df2
和isin
,使用多个mul
:
然后按cumcount
计算每个组的值并过滤前3:
df = df2[df2['Time(msec)'].isin(df1['Time(s)'].mul(1000))]
df = df[df.groupby('Time(msec)').cumcount() < 3]
print (df)
Time(msec) channel svid value-1 value-2 valu-03
3 1339400 1 1 1.6 0.4 5.30
4 1339400 2 12 0.5 1.8 -4.40
5 1339400 3 4 -0.2 1.6 -7.90
6 1340400 1 1 0.3 0.3 1.50
7 1340400 2 6 2.3 -4.3 1.00
8 1340400 3 4 2.0 1.1 -0.45
9 1341400 1 1 2.0 2.1 0.00
10 1341400 2 8 3.4 -0.3 1.00
11 1341400 3 6 0.0 4.1 2.30
详情:
print (df.groupby('Time(msec)').cumcount())
3 0
4 1
5 2
6 0
7 1
8 2
9 0
10 1
11 2
dtype: int64