修改:我的df
创建中有一个拼写错误,_
的最后一个值丢失了MediaName
;现在已经纠正了。
我想在数据框中创建一个新变量TrialId
,作为另一个变量MediaName
的值的一部分,具体取决于第三个变量Phase
的值,并且我认为我可以使用strsplit
中的ifelse
和dplyr::mutate
执行此操作,如下所示:
library(dplyr)
# Creating a simple data frame for the example
df <- data.frame(Phase = c(rep("Familiarisation",8),rep("Test",3)),
MediaName = c("Flip_A1_G1","Reg_B2_S1","Reg_A2_G1","Flip_B1_S1",
"Reg_A1_G2","Flip_B2_S2","Reg_A2_G2","Flip_B1_S2",
"HC_A1L","TC_B1R","RC_BL_2R"))
# Creating a new column
df <- df %>%
mutate(TrialId = ifelse(Phase == "Familiarisation",
sapply(strsplit(MediaName, "_"), "[", 2),
sapply(strsplit(MediaName, "_"), "[", 1)))
预期结果为
> df$TrialId
[1] "A1" "B2" "A2" "B1" "A1" "B2" "A2" "B1" "HC" "TC" "RC"
然而,这给了我以下错误,因为我相信strsplit
:
Error in mutate_impl(.data, dots) :
Evaluation error: non-character argument.
我从https://cloud.google.com/appengine/docs/flexible/go/scheduling-jobs-with-cron-yaml知道我可以通过在这个小例子中将我的数据框定义为tibble::data_frame
来轻松解决我的问题,而不知道为什么这会解决问题。虽然我的实际代码df
来自于阅读csv文件(read.csv()
),但我无法做到这一点。我一直在想使用df <- df %>% as_tibble() %>% mutate(...)
以类似的方式解决问题,但它没有(为什么?)。
即使在阅读文件时,有没有办法实际使用tibble
?或者是否有其他方法可以实现我需要做的事情,而不使用strsplit
?
我还在this SO question上阅读您可以使用tidyr::separate
,但它并没有完全符合我的要求,因为我需要保留第一个或第二个值,具体取决于Phase
的价值。
答案 0 :(得分:2)
您可以尝试:
library(tidyverse)
# your first data
df_old <- data.frame(Phase = c(rep("Familiarisation",8),rep("Test",3)),
MediaName = c("Flip_A1_G1","Reg_B2_S1","Reg_A2_G1","Flip_B1_S1",
"Reg_A1_G2","Flip_B2_S2","Reg_A2_G2","Flip_B1_S2",
"HC_A1L","TC_B1R","RC_BL2R"))
df_old %>%
separate(MediaName, into=letters[1:3], sep="_", fill = "left", remove = FALSE) %>%
select(Phase, MediaName, TrialId=b)
Phase MediaName TrialId
1 Familiarisation Flip_A1_G1 A1
2 Familiarisation Reg_B2_S1 B2
3 Familiarisation Reg_A2_G1 A2
4 Familiarisation Flip_B1_S1 B1
5 Familiarisation Reg_A1_G2 A1
6 Familiarisation Flip_B2_S2 B2
7 Familiarisation Reg_A2_G2 A2
8 Familiarisation Flip_B1_S2 B1
9 Test HC_A1L HC
10 Test TC_B1R TC
11 Test RC_BL2R RC
根据提供的样本数据,它是一种硬编码解决方案。单独"_"
,如果左侧有两个而不是三个"_"
填充NA
。最后,选择您需要的列。
使用您的新数据会更复杂一些。但你可以尝试:
df %>%
add_column(MediaName_keep=df$MediaName) %>%
group_by(MediaName_keep) %>%
separate_rows(MediaName, sep="_") %>%
mutate(n=1:n()) %>%
filter((Phase == "Familiarisation" & n == 2) | (Phase == "Test" & n == 1)) %>%
select(Phase, MediaName=MediaName_keep, TrialId=MediaName)
# A tibble: 11 x 3
# Groups: MediaName [11]
Phase MediaName TrialId
<fctr> <fctr> <chr>
1 Familiarisation Flip_A1_G1 A1
2 Familiarisation Reg_B2_S1 B2
3 Familiarisation Reg_A2_G1 A2
4 Familiarisation Flip_B1_S1 B1
5 Familiarisation Reg_A1_G2 A1
6 Familiarisation Flip_B2_S2 B2
7 Familiarisation Reg_A2_G2 A2
8 Familiarisation Flip_B1_S2 B1
9 Test HC_A1L HC
10 Test TC_B1R TC
11 Test RC_BL_2R RC
这个想法是一样的。单独,但此时按MediaName_keep
添加和计算新行,然后根据您的需要进行过滤。
答案 1 :(得分:1)
您遇到的问题是因为字符串是在factor
中自动转换的,因此您无法将strsplit()
应用于非字符串对象。我的解决方案只是将MediaName
转换为string
类型。
require(dplyr)
df <- df %>%
dplyr::mutate(MediaName = as.character(levels(df$MediaName))[df$MediaName]) %>%
dplyr::mutate(TrialId = ifelse(Phase == "Familiarisation",
sapply(strsplit(MediaName, "_"), "[", 2),
sapply(strsplit(MediaName, "_"), "[", 1)))
solution<- c("A1", "B2", "A2", "B1", "A1", "B2", "A2", "B1", "HC", "TC", "RC")
identical(solution, df$TrialId)
[1] TRUE