使用数据框建模数据

时间:2017-12-06 00:04:47

标签: python pandas csv scikit-learn

我正在尝试训练数据集来预测输入的文本是否来自科幻小说。我对python比较陌生,所以我不确切地知道我做错了什么。

代码:

#class17.py
"""
Created on Fri Nov 17 14:07:36 2017

@author: twaters

Read three science fiction novels
Predict a sentence or paragraph
see whether sentence/phrase/book is from a science fiction novel or not
"""

import nltk
import pandas as pd
import csv
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression

from sklearn import model_selection
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from nltk.corpus import stopwords

#nltk.download()


irobot = "C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/irobot.txt"
enders_game = "C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/endersgame.txt"
space_odyssey ="C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/spaceodyssey.txt"
to_kill_a_mockingbird = "C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/tokillamockingbird.txt"

sr = set(stopwords.words('english'))
freq = {}

def main():
    #read_novels()
    model_novels()


def read_novel(b, is_scifi):

    read_file = open(b)

    text = read_file.read()
    words = text.split()
    clean_tokens = words[:]
    filtered_list = []

    for word in clean_tokens:
        word = word.lower()
        if word not in sr:
            filtered_list.append(word)

    freq = nltk.FreqDist(clean_tokens)
    #print(filtered_list)
    for word in clean_tokens:
       count = freq.get(word,0)
       freq[word] = count + 1



    frequency_list = freq.keys()

    with open('C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/novels_data.txt', 'w', encoding='utf-8') as csvfile:
        fieldnames = ['word','frequency','is_scifi']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames, lineterminator = '\n')
        writer.writeheader()

        for words in frequency_list:
            writer.writerow({'word': words,'frequency': freq[words],'is_scifi':is_scifi})

    print("List compiled.")

def read_novels(): 

    read_novel(enders_game, 0)
    read_novel(space_odyssey, 0)
    read_novel(irobot, 0)
    read_novel(to_kill_a_mockingbird, 1)

def model_novels():

    df = pd.read_csv('C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/novels_data.txt', 'rb', delimiter='\t', encoding='utf-8')
    print(df)

    #for index in range(2, df.shape[0], 100):
    df_subset = df.loc[1:]
    #print(df_subset)
    X = df_subset.loc[:, 'frequency':'is_scifi']
    Y = df_subset.loc[:, 'frequency':'is_scifi']
    testing_size = 0.2
    seed = 7
    X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=testing_size, random_state=seed)

    selectedModel = LogisticRegression()
    selectedModel.fit(X_train, Y_train)  
    predictions = selectedModel.predict(X_validation)

#%%
#print("Accuracy Score:\n", accuracy_score(Y_validation, predictions))
#print("Confusion Matrix:\n",confusion_matrix(predictions, Y_validation))
#print("Class report:\n", classification_report(Y_validation, predictions))
#df_test = pd.read_csv('C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/novels_data.txt', delimiter='\t')
#predictions_test = selectedModel.predict(df_test)
#test_frame = pd.DataFrame(predictions_test)
#test_frame.to_csv('C:/Users/twaters/Desktop/Assignments/SQL/Python/DA Project/novels_data_result.txt', sep='\t')

错误: 回溯(最近一次调用最后一次):

文件"",第1行,in     main()的

文件" C:/ Users / user / Desktop / Assignments / SQL / Python / DA Project / class17.py",第36行,主要     model_novels()

文件" C:/ Users / user / Desktop / Assignments / SQL / Python / DA Project / class17.py",第95行,在model_novels中     selectedModel.fit(X_train,Y_train)

文件" D:\ Program Files(x86)\ Anaconda \ lib \ site-packages \ sklearn \ linear_model \ logistic.py",第1216行,适合     为了=" C&#34)

文件" D:\ Program Files(x86)\ Anaconda \ lib \ site-packages \ sklearn \ utils \ validation.py",第573行,在check_X_y中     ensure_min_features,warn_on_dtype,estimator)

文件" D:\ Program Files(x86)\ Anaconda \ lib \ site-packages \ sklearn \ utils \ validation.py",第453行,在check_array中     _assert_all_finite(数组)

文件" D:\ Program Files(x86)\ Anaconda \ lib \ site-packages \ sklearn \ utils \ validation.py",第44行,_assert_all_finite     "或者对于%r来说值太大。" %X.dtype)

ValueError:输入包含NaN,无穷大或对于dtype来说太大的值(' float64')。

如果您需要访问我正在阅读的文件,我可以链接它们。

感谢您的帮助!

1 个答案:

答案 0 :(得分:0)

以下是您应该注意的堆栈跟踪中的要点:

文件“C:/ Users / user / Desktop / Assignments / SQL / Python / DA Project / class17.py”,第95行,在model_novels中选择了ModelModel.fit(X_train,Y_train)

文件“D:\ Program Files(x86)\ Anaconda \ lib \ site-packages \ sklearn \ utils \ validation.py”,第44行,在_assert_all_finite中“或者对于%r来说太大了”。 %X.dtype)

这告诉我们格式化X存在问题,因此逻辑回归将接受它。

您应该检查X_train和X以查看它们是否包含错误值。

这个答案将为您提供一些指导。

Python pandas: check if any value is NaN in DataFrame