有没有办法在numpy中执行相当于外部添加子阵列的方法?
也就是说,我有2个2x2xNxM
形式的数组,每个数组可能被认为是2x2
矩阵N
高和M
宽的堆栈。我想将这些矩阵中的每一个添加到另一个数组的每个矩阵中,以形成一个2x2xNxMxNxM
数组,其中最后四个索引对应于我最初的两个数组中的索引,以便我可以索引{{1} }。
如果这些是标量数组,那将是微不足道的,我所要做的就是:
output[:,:,x1,y1,x2,y2] == a1[:,:,x1,y1] + a2[:,:,x2,y2]
但是,这不适用于A, B = a.ravel(), b.ravel()
four_D = (a[...:np.newaxis] + b).reshape(*a1.shape, *a2.shape)
for (x1, y1, x2, y2), added in np.ndenumerate(four_D):
assert added == a1[x1,y1] + a2[x2,y2]
和a
由矩阵组成的情况。当然,我可以使用嵌套的for循环,但我的数据集会相当大,而且我期望在多个数据集上运行它。
有一种有效的方法吗?
答案 0 :(得分:2)
扩展数组以获得更多维度,然后利用broadcasting
-
output = a1[...,None,None] + a2[...,None,None,:,:]
示例运行 -
In [38]: # Setup input arrays
...: N = 3
...: M = 4
...: a1 = np.random.rand(2,2,N,M)
...: a2 = np.random.rand(2,2,N,M)
...:
...: output = np.zeros((2,2,N,M,N,M))
...: for x1 in range(N):
...: for x2 in range(N):
...: for y1 in range(M):
...: for y2 in range(M):
...: output[:,:,x1,y1,x2,y2] = a1[:,:,x1,y1] + a2[:,:,x2,y2]
...:
...: output1 = a1[...,None,None] + a2[...,None,None,:,:]
...:
...: print np.allclose(output, output1)
True
答案 1 :(得分:1)
与插入额外轴的标量相同,也适用于更高维数组(这称为broadcasting):
import numpy as np
a1 = np.random.randn(2, 2, 3, 4)
a2 = np.random.randn(2, 2, 3, 4)
added = a1[..., np.newaxis, np.newaxis] + a2[..., np.newaxis, np.newaxis, :, :]
print(added.shape) # (2, 2, 3, 4, 3, 4)