如何在NLTK中使用stanford word tokenizer?

时间:2017-12-04 00:10:31

标签: python nltk stanford-nlp tokenize

我正在寻找在nltk中使用stanford字标记器的方法,我想使用,因为当我比较stanford和nltk字标记器的结果时,它们都是不同的。我知道可能有办法使用stanford tokenizer,就像我们可以在NLTK中支持POS Tagger和NER一样。

是否可以在不运行服务器的情况下使用stanford tokenizer?

由于

2 个答案:

答案 0 :(得分:8)

注意:此解决方案仅适用于:

  • NLTK v3.2.5(v3.2.6会有更简单的界面)

  • Stanford CoreNLP(版本> = 2016-10-31)

首先,您必须首先正确安装Java 8,如果Stanford CoreNLP在命令行上运行,NLTK v3.2.5中的Stanford CoreNLP API如下所示。

注意:您必须在终端中使用NLTK中的新CoreNLP API启动CoreNLP服务器。

在终端上:

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2016-10-31.zip
unzip stanford-corenlp-full-2016-10-31.zip && cd stanford-corenlp-full-2016-10-31

java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-preload tokenize,ssplit,pos,lemma,parse,depparse \
-status_port 9000 -port 9000 -timeout 15000

在Python中:

>>> from nltk.parse.corenlp import CoreNLPParser
>>> st = CoreNLPParser()
>>> tokenized_sent = list(st.tokenize('What is the airspeed of an unladen swallow ?'))
>>> tokenized_sent
['What', 'is', 'the', 'airspeed', 'of', 'an', 'unladen', 'swallow', '?']

答案 1 :(得分:2)

在NLTK之外,您可以使用official Python interface that's recently release by Stanford NLP

安装

cd ~
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2016-10-31.zip
unzip stanford-corenlp-full-2016-10-31.zip && cd stanford-corenlp-full-2016-10-31
pip3 install -U https://github.com/stanfordnlp/python-stanford-corenlp/archive/master.zip

设置环境

# On Mac
export CORENLP_HOME=/Users/<username>/stanford-corenlp-full-2016-10-31/

# On linux
export CORENLP_HOME=/home/<username>/stanford-corenlp-full-2016-10-31/

在Python中

>>> import corenlp
>>> with corenlp.client.CoreNLPClient(annotators="tokenize ssplit".split()) as client:
...     ann = client.annotate(text)
... 
[pool-1-thread-4] INFO CoreNLP - [/0:0:0:0:0:0:0:1:55475] API call w/annotators tokenize,ssplit
Chris wrote a simple sentence that he parsed with Stanford CoreNLP.
>>> sentence = ann.sentence[0]
>>> 
>>> [token.word for token in sentence.token]
['Chris', 'wrote', 'a', 'simple', 'sentence', 'that', 'he', 'parsed', 'with', 'Stanford', 'CoreNLP', '.']