我有Series
这样:
>>> s = pd.Series([1,0,0,3,0,5,0,0,0])
>>> s[s==0] = pd.np.nan
>>> s
0 1.0
1 NaN
2 NaN
3 3.0
4 NaN
5 5.0
6 NaN
7 NaN
8 NaN
dtype: float64
我希望延伸'值,如下所示:
>>> t = s.shift()
>>> for _ in range(100000):
... s[s.isnull()] = t
... if not s.isnull().any():
... break
... t = t.shift()
...
>>> s
0 1.0
1 1.0
2 1.0
3 3.0
4 3.0
5 5.0
6 5.0
7 5.0
8 5.0
dtype: float64
但我喜欢更具矢量化和效率的东西。我该怎么做?
答案 0 :(得分:4)
您正在寻找fillna
:
>>> s.fillna(method='ffill')
0 1.0
1 1.0
2 1.0
3 3.0
4 3.0
5 5.0
6 5.0
7 5.0
8 5.0
dtype: float64
>>>
答案 1 :(得分:1)
def numpy_ffill(s):
arr = s.values
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(len(mask)),0)
out = arr[np.maximum.accumulate(idx)]
return pd.Series(out)
示例运行 -
In [41]: s
Out[41]:
0 1.0
1 NaN
2 NaN
3 3.0
4 NaN
5 5.0
6 NaN
7 NaN
8 NaN
dtype: float64
In [42]: numpy_ffill(s)
Out[42]:
0 1.0
1 1.0
2 1.0
3 3.0
4 3.0
5 5.0
6 5.0
7 5.0
8 5.0
dtype: float64