我正在尝试运行一个简单的贝叶斯分类,但我遇到函数预测问题。 当我运行我的代码时,我得到一个0级别的因子。 来自Kaggle的速度约会数据集有8个变量。正在预测的是"匹配"。没有NA。 我把女人和女人分开了。然后我划分了女性数据集" Bayes_data_women"进入火车和测试。 这是我的代码:
class ProductType(DjangoObjectType):
class Meta:
model = Product
filter_fields = {'description': ['icontains']}
interfaces = (graphene.relay.Node,)
class CreateProduct(graphene.Mutation):
class Arguments: # change here
barcode = graphene.String()
product = graphene.Field(lambda: ProductType)
def mutate(self, info, barcode):
# change here
# somehow the graphene documentation just state the code I had in my question which doesn't work for me. But this one does
product = Product.objects.create(barcode=barcode)
return CreateProduct(product=product)
class ProductMutation(graphene.ObjectType): # change here
create_product = CreateProduct.Field()
class ProductQuery(object):
product = relay.Node.Field(ProductType)
all_products = DjangoFilterConnectionField(ProductType)
def resolve_all_products(self, info, **kwargs):
return Product.objects.all()
代码运行,但我得到:default_pred:因子w / 0级
提前谢谢。