我正在尝试训练和测试一个简单的多层感知器,就像在第一个Chainer教程中一样,但是使用我自己的数据集而不是MNIST。这是我使用的代码(主要来自教程):
class MLP(Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
y = self.l3(h2)
return y
X, X_test, y, y_test, xHeaders, yHeaders = load_train_test_data('xHeuristicData.csv', 'yHeuristicData.csv')
print 'dataset shape X:', X.shape, ' y:', y.shape
model = MLP(100, 1)
optimizer = optimizers.SGD()
optimizer.setup(model)
train = tuple_dataset.TupleDataset(X, y)
test = tuple_dataset.TupleDataset(X_test, y_test)
train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'), out='result')
trainer.extend(extensions.Evaluator(test_iter, model))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(['epoch', 'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar())
trainer.run()
print 'Predicted value for a test example'
print model(X_test[0])
而不是训练和打印预测值,我在" trainer.run()"
中得到以下错误:dataset shape X: (1003, 116) y: (1003,)
Exception in main training loop: __call__() takes exactly 2 arguments (3 given)
Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/chainer/training/trainer.py", line 299, in run
update()
File "/usr/local/lib/python2.7/dist-packages/chainer/training/updater.py", line 223, in update
self.update_core()
File "/usr/local/lib/python2.7/dist-packages/chainer/training/updater.py", line 234, in update_core
optimizer.update(loss_func, *in_arrays)
File "/usr/local/lib/python2.7/dist-packages/chainer/optimizer.py", line 534, in update
loss = lossfun(*args, **kwds)
Will finalize trainer extensions and updater before reraising the exception.
Traceback (most recent call last):
File "trainHeuristicChainer.py", line 76, in <module>
trainer.run()
File "/usr/local/lib/python2.7/dist-packages/chainer/training/trainer.py", line 313, in run
six.reraise(*sys.exc_info())
File "/usr/local/lib/python2.7/dist-packages/chainer/training/trainer.py", line 299, in run
update()
File "/usr/local/lib/python2.7/dist-packages/chainer/training/updater.py", line 223, in update
self.update_core()
File "/usr/local/lib/python2.7/dist-packages/chainer/training/updater.py", line 234, in update_core
optimizer.update(loss_func, *in_arrays)
File "/usr/local/lib/python2.7/dist-packages/chainer/optimizer.py", line 534, in update
loss = lossfun(*args, **kwds)
TypeError: __call__() takes exactly 2 arguments (3 given)
我不清楚如何处理错误。我已经使用其他框架成功训练了类似的网络,但我对Chainer感兴趣,因为它与PyPy兼容。
这里提供了包含文件的tgz:https://mega.nz/#!wwsBiSwY!g72pC5ZgekeMiVr-UODJOqQfQZZU3lCqm9Er2jH4UD8
答案 0 :(得分:1)
您正在向MLP发送(X, y)
元组,而实施的__call__
仅接受x
。
您可以将实施修改为
class MLP(Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)
def __call__(self, x, y):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
predict = self.l3(h2)
loss = F.squared_error(predict, y)
// or you can write it on your own as follows
// loss = F.sum(F.square(predict - y))
return loss
在chainer中可能与其他框架不同,默认情况下,标准更新程序假定__call__
为损失函数。因此,呼叫model(X, y)
将返回当前小批量的丢失。这就是为什么chainer教程引入另一个Classifier
类来计算损失函数并保持MLP简单的原因。分类器在MNIST中很有意义,但不适合您的任务,因此您可以自行实现丢失功能。
完成培训后,您可以保存模型实例(可以通过向培训师添加snapshot_object的扩展名)。
要使用已保存的模型,就像在测试中一样,您必须在类中编写另一个方法,可能名为test
,其代码与当前__call__
相同,只有X
手边输入,因此不需要其他y
。
此外,如果您不想在MLP类中添加任何额外的方法,使其变为纯粹,那么您需要自己编写更新程序并更自然地计算损失函数。要继承标准版本更容易,您可以按如下方式编写,
class MyUpdater(chainer.training.StandardUpdater):
def __init__(self, data_iter, model, opt, device=-1):
super(MyUpdater, self).__init__(data_iter, opt, device=device)
self.mlp = model
def update_core(self):
batch = self.get_iterator('main').next()
x, y = self.converter(batch, self.device)
predict = self.mlp(x)
loss = F.squared_error(predict, y)
self.mlp.cleargrads()
loss.backward()
self.get_iterator('main').update()
updater = MyUpdater(train_iter, model, optimizer)