提取MSER检测区域(Python,OpenCV)

时间:2017-12-01 14:36:42

标签: python opencv bounding-box mser

我无法在此图像中通过MSER提取检测到的区域:

img

我想要的是保存绿色边界区域。 我的实际代码是:

import cv2
import numpy as np

mser = cv2.MSER_create()
img = cv2.imread('C:\\Users\\Link\\img.tif')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = img.copy()
regions, _ = mser.detectRegions(gray)
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(vis, hulls, 1, (0, 255, 0))

mask = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.uint8)
mask = cv2.dilate(mask, np.ones((150, 150), np.uint8))
for contour in hulls:
    cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)

    text_only = cv2.bitwise_and(img, img, mask=mask)


cv2.imshow('img', vis)
cv2.waitKey(0)
cv2.imshow('mask', mask)
cv2.waitKey(0)
cv2.imshow('text', text_only)
cv2.waitKey(0)

预期结果应该是像图像一样的投资回报率。

out

来源图片:

src

3 个答案:

答案 0 :(得分:1)

detectRegions还返回边界框:

regions, boundingBoxes = mser.detectRegions(gray)

for box in boundingBoxes:
        x, y, w, h = box;
        cv2.rectangle(vis, (x, y), (x+w, y+h), (0, 255, 0), 1)

这将绘制绿色矩形,或者按照GPhilo的答案中所述保存它们。

答案 1 :(得分:1)

嘿找到了一种更干净的方法来获取边界框

regions, _ = mser.detectRegions(roi_gray)

bounding_boxes = [cv2.boundingRect(p.reshape(-1, 1, 2)) for p in regions]

答案 2 :(得分:0)

只需获取每个轮廓的边界框,将其用作ROI以提取区域并将其保存:

for i, contour in enumerate(hulls):
    x,y,w,h = cv2.boundingRect(contour)
    cv2.imwrite('{}.png'.format(i), img[y:y+h,x:x+w])