我无法在此图像中通过MSER提取检测到的区域:
我想要的是保存绿色边界区域。 我的实际代码是:
import cv2
import numpy as np
mser = cv2.MSER_create()
img = cv2.imread('C:\\Users\\Link\\img.tif')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = img.copy()
regions, _ = mser.detectRegions(gray)
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(vis, hulls, 1, (0, 255, 0))
mask = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.uint8)
mask = cv2.dilate(mask, np.ones((150, 150), np.uint8))
for contour in hulls:
cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)
text_only = cv2.bitwise_and(img, img, mask=mask)
cv2.imshow('img', vis)
cv2.waitKey(0)
cv2.imshow('mask', mask)
cv2.waitKey(0)
cv2.imshow('text', text_only)
cv2.waitKey(0)
预期结果应该是像图像一样的投资回报率。
来源图片:
答案 0 :(得分:1)
detectRegions还返回边界框:
regions, boundingBoxes = mser.detectRegions(gray)
for box in boundingBoxes:
x, y, w, h = box;
cv2.rectangle(vis, (x, y), (x+w, y+h), (0, 255, 0), 1)
这将绘制绿色矩形,或者按照GPhilo的答案中所述保存它们。
答案 1 :(得分:1)
嘿找到了一种更干净的方法来获取边界框
regions, _ = mser.detectRegions(roi_gray)
bounding_boxes = [cv2.boundingRect(p.reshape(-1, 1, 2)) for p in regions]
答案 2 :(得分:0)
只需获取每个轮廓的边界框,将其用作ROI以提取区域并将其保存:
for i, contour in enumerate(hulls):
x,y,w,h = cv2.boundingRect(contour)
cv2.imwrite('{}.png'.format(i), img[y:y+h,x:x+w])