首先发布这里,但我真的可以使用一些反馈或任何提示。我的AI课程项目基本上是编写一个程序,学习如何玩Flappy Bird。我在网上找到了很棒的教程。 https://pythonprogramming.net/openai-cartpole-neural-network-example-machine-learning-tutorial/我的代码很大程度上基于此。我改变了某些方面,以便我可以让它为Flappy Bird而不是cartpole工作。然而,在所有这些修改之后,我遇到了一个问题,就是我的代码总是产生0的输出,因此鸟只会下降。任何帮助,批评或想法将不胜感激。谢谢。
import gym
import pygame
import random
import numpy as np
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from statistics import mean, median
from collections import Counter
from ple.games.flappybird import FlappyBird
game = FlappyBird()
from ple import PLE
p = PLE(game, fps=30, display_screen=True,
reward_values=
{
"positive": 1.0,
"negative": -1.0,
"tick": 1.0,
"loss": 0.0,
"win": 5.0
},
force_fps= True)
p.init()
reward = 0.0
counter = 0
initial_games = 1000
goal_steps = 1000
score_requirement = 50
LR = 1e-5
myKeys = ['next_pipe_dist_to_player','next_pipe_bottom_y','player_vel','next_next_pipe_bottom_y','next_pipe_top_y','next_next_pipe_dist_to_player','player_y','next_next_pipe_top_y']
def initial_population():
training_data = []
scores = []
accepted_scores = []
reward = 0
for i in range(initial_games):
score = 0
game_memory = []
prev_observation = []
for _ in range(goal_steps):
action = random.randrange(0,10)
observation = game.getGameState()
p.act(0)
if action == 1:
reward = p.act(119)
if len(prev_observation) > 0:
game_memory.append([prev_observation, action])
prev_observation = observation
score += reward
if p.game_over():
break
if score >= score_requirement:
accepted_scores.append(score)
for data in game_memory:
if data[1] == 1:
output = [0,1]
elif data[1] == 0:
output = [1,0]
elif data[1] == 2:
output = [1, 0]
elif data[1] == 3:
output = [1, 0]
elif data[1] == 4:
output = [1, 0]
elif data[1] == 5:
output = [1, 0]
elif data[1] == 6:
output = [1, 0]
elif data[1] == 7:
output = [1, 0]
elif data[1] == 8:
output = [1, 0]
elif data[1] == 9:
output = [1, 0]
elif data[1] == 10:
output = [1, 0]
training_data.append([[data[0][k] for k in myKeys], output])
p.reset_game()
scores.append(score)
training_data_save = np.array(training_data)
#np.save('saved.npy', training_data_save)
print('Average accepted score:', mean(accepted_scores))
print('Median accepted score:', median(accepted_scores))
print(Counter(accepted_scores))
return training_data
def nueral_netword_model(input_size):
network = input_data(shape = [None, input_size, 1], name = 'input')
network = fully_connected(network,128,activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=LR,
loss = 'binary_crossentropy', name='targets')
model = tflearn.DNN(network, tensorboard_dir='log')
return model
def train_model(training_data, model=False):
X = np.array([i[0] for i in training_data]).reshape(-1, len(training_data[0][0]),1)
Y = [i[1] for i in training_data]
if not model:
model = nueral_netword_model(input_size=len(X[0]))
model.fit({'input':X}, {'targets':Y}, n_epoch=2, snapshot_step=500, show_metric=True, run_id='openaistuff')
return model
training_data = initial_population()
model = train_model(training_data)
scores = []
choices = []
for each_game in range(1000):
score = 0
game_memory = []
prev_obs = []
p.reset_game()
for _ in range(goal_steps):
p.act(0)
if len(prev_obs) == 0:
action = random.randrange(0, 10)
else:
action = np.argmax(model.predict(prev_obs.reshape(-1, len(prev_obs), 1))[0])
print("Action is ", action)
if action == 1:
reward = p.act(119)
choices.append(action)
new_observation = np.asarray([game.getGameState()[k] for k in myKeys])
p.act(0)
prev_obs = new_observation
game_memory.append([new_observation, action])
score += reward
if p.game_over():
break
scores.append(score)
print('Average Score:',sum(scores)/len(scores))
print('choice 1:{} choice 0:{}'.format(choices.count(1)/len(choices),choices.count(0)/len(choices)))
print(score_requirement)