我想从给定的数据集生成Pascal金字塔数据,看起来像这样
Pyramid(1,2,3,4,5,6,7,8,9);
这就是我一直在做的事情,但它只到达第二层,而我希望它以递归方式循环到顶部。
template<typename T>
const T Pyramid(T a, T b)
{
return a + b;
}
template<typename T, typename ...A>
const T Pyramid(T t1, T t2, A...a)
{
return Pyramid(t1, t2) + Pyramid(t2, a...);
}
你能帮我填一下下一层吗? ;)
答案 0 :(得分:0)
这是C ++ 17解决方案(使用fold expressions):
#include <iostream>
#include <stdexcept>
#include <utility>
using Integer = std::uint64_t;
constexpr auto Factorial(const Integer n)
{
Integer factorial = 1;
for (Integer i = 2; i <= n; ++i)
{
factorial *= i;
}
return factorial;
}
constexpr auto Binom(const Integer n, const Integer m)
{
if (n < m)
{
throw std::invalid_argument("Binom: n should not be less than m");
}
return Factorial(n) / Factorial(m) / Factorial(n - m);
}
template <Integer... indices, typename... Types>
constexpr auto PyramidImplementation(std::integer_sequence<Integer, indices...>, Types... values)
{
return ((Binom(sizeof...(values), indices) * values) + ...);
}
template <typename... Types>
constexpr auto Pyramid(Types... values)
{
return PyramidImplementation(std::make_integer_sequence<Integer, sizeof...(values)>{}, values...);
}
// ...
constexpr auto pyramid = Pyramid(1, 2, 3, 4, 5, 6, 7, 8, 9);
std::cout << "Pyramid = " << pyramid << std::endl;
此解决方案不使用递归,因为a[i]
(i = 0 ... n - 1
)的所需结果可以计算为binom(n, i) * a[i]
的总和(对于i = 0 ... n - 1
),binom(n, m)
是binomial coefficient。 Binom
函数以最简单的方式实现,因此它仅适用于n
的小值。
可以通过以下PyramidImplementation
函数实现使代码与C ++ 14兼容:
#include <type_traits>
template <Integer... indices, typename... Types>
constexpr auto PyramidImplementation(std::integer_sequence<Integer, indices...>, Types... values)
{
using Do = int[];
std::common_type_t<Types...> pyramid{};
(void)Do{0, (pyramid += Binom(sizeof...(values), indices) * values, 0)...};
return pyramid;
}