我以json字符串生成输入数据。
主题 - myinput
{"time":"2017-11-28T09:42:26.776Z","name":"Lane1","oclass"
:"myClass","id":112553,"Scope":"198S"}
我的班级看起来像这样:
public class App {
static public class CountryMessage {
public String time;
public String Scope;
public String id;
public String oclass;
public String name;
}
private static final String APP_ID = "countries-streaming-analysis-app";
public static void main(String[] args) {
System.out.println("Kafka Streams Demonstration");
StreamsConfig config = new StreamsConfig(getProperties());
final Serde < String > stringSerde = Serdes.String();
final Serde < Long > longSerde = Serdes.Long();
Map < String, Object > serdeProps = new HashMap < > ();
final Serializer < CountryMessage > countryMessageSerializer = new JsonPOJOSerializer < > ();
serdeProps.put("JsonPOJOClass", CountryMessage.class);
countryMessageSerializer.configure(serdeProps, false);
final Deserializer < CountryMessage > countryMessageDeserializer = new JsonPOJODeserializer < > ();
serdeProps.put("JsonPOJOClass", CountryMessage.class);
countryMessageDeserializer.configure(serdeProps, false);
final Serde < CountryMessage > countryMessageSerde = Serdes.serdeFrom(countryMessageSerializer,countryMessageDeserializer);
KStreamBuilder kStreamBuilder = new KStreamBuilder();
KStream<String, CountryMessage> countriesStream = kStreamBuilder.stream(stringSerde, countryMessageSerde, "vanitopic");
KGroupedStream<String, CountryMessage> countries = countriesStream.selectKey((k, traffic) -> traffic.Scope).groupByKey();
KTable<Windowed<String>, Long> aggregatedStream = countries.count(TimeWindows.of(60 * 1000L), "UserCountStore");
System.out.println("Starting Kafka Streams Countries Example");
KafkaStreams kafkaStreams = new KafkaStreams(kStreamBuilder, config);
kafkaStreams.start();
System.out.println("Now started CountriesStreams Example");
}
private static Properties getProperties() {
Properties settings = new Properties();
settings.put(StreamsConfig.APPLICATION_ID_CONFIG, APP_ID);
settings.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "10.106.9.235:9092,10.106.9.235:9093,10.106.9.235:9094");
settings.put(StreamsConfig.ZOOKEEPER_CONNECT_CONFIG, "10.106.9.235:2181");
//settings.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
//settings.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
return settings;
}
}
我得到轰鸣声阶级演员异常:
线程中的异常 “国家串流分析-APP-f7f95119-4401-4a6e-8060-5a138ffaddb2-StreamThread-1” org.apache.kafka.streams.errors.StreamsException:陷入异常 处理。 taskId = 0_0,processor = KSTREAM-SOURCE-0000000000, topic = vanitopic,partition = 0,offset = 2036 at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:203) 在 org.apache.kafka.streams.processor.internals.StreamThread.processAndPunctuate(StreamThread.java:679) 在 org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:557) 在 org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:527) 引起:org.apache.kafka.streams.errors.StreamsException:A 序列化器(关键: org.apache.kafka.common.serialization.ByteArraySerializer / value: org.apache.kafka.common.serialization.ByteArraySerializer)不是 兼容实际的键或值类型(键类型:java.lang.String / value type:com.cisco.streams.countries.App $ CountryMessage)。更改 StreamConfig中的默认Serdes或提供正确的Serdes via 方法参数。在 org.apache.kafka.streams.processor.internals.SinkNode.process(SinkNode.java:91) 在 org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:82) 在 org.apache.kafka.streams.kstream.internals.KStreamFilter $ KStreamFilterProcessor.process(KStreamFilter.java:43) 在 org.apache.kafka.streams.processor.internals.ProcessorNode $ 1.run(ProcessorNode.java:47) 在 org.apache.kafka.streams.processor.internals.StreamsMetricsImpl.measureLatencyNs(StreamsMetricsImpl.java:187) 在 org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133) 在 org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:82) 在 org.apache.kafka.streams.kstream.internals.KStreamMap $ KStreamMapProcessor.process(KStreamMap.java:42) 在 org.apache.kafka.streams.processor.internals.ProcessorNode $ 1.run(ProcessorNode.java:47) 在 org.apache.kafka.streams.processor.internals.StreamsMetricsImpl.measureLatencyNs(StreamsMetricsImpl.java:187) 在 org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133) 在 org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:82) 在 org.apache.kafka.streams.processor.internals.SourceNode.process(SourceNode.java:80) 在 org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:189) ... 3更多引起:java.lang.ClassCastException:java.lang.String 不能被投到[B at org.apache.kafka.common.serialization.ByteArraySerializer.serialize(ByteArraySerializer.java:21) 在 org.apache.kafka.streams.processor.internals.RecordCollectorImpl.send(RecordCollectorImpl.java:88) 在 org.apache.kafka.streams.processor.internals.RecordCollectorImpl.send(RecordCollectorImpl.java:76) 在 org.apache.kafka.streams.processor.internals.SinkNode.process(SinkNode.java:87) ......还有16个
我需要帮助来了解如何以及在何处应用我创建的自定义Serdes
答案 0 :(得分:2)
将序列化器添加到 groupByKey
KGroupedStream<String, CountryMessage> countries = countriesStream.selectKey((k, traffic) -> traffic.Scope).groupByKey(Grouped.with(Serdes.String(), new ObjectMapperSerde<>(CountryMessage.class)));
答案 1 :(得分:1)
在您的代码中,
KGroupedStream<String, CountryMessage> countries = countriesStream.selectKey((k, traffic) -> traffic.Scope).groupByKey();
groupByKey()
需要设置两个序列化器,因为这将触发数据重新分区。或者,您将默认服务设置为String
和CountryMessage
类型。
正如我的评论中所提到的, 每个 运算符都不使用来自StreamsConfig
的默认Serdes,需要设置正确的Serdes。
因此,count()
操作也需要指定相应的String
和Long
Serdes:
countries.count(TimeWindows.of(60 * 1000L), "UserCountStore");
所有可能需要Serdes
的运算符都有适当的重载。只需检查您正在使用的所有操作员的所有过载情况。
查看文档了解更多详情:https://docs.confluent.io/current/streams/developer-guide/dsl-api.html