我试图在每个面(骰子)上渲染一个具有不同纹理的3D立方体,当我只使用相同的图像渲染立方体时,它可以完美地工作,但立方体甚至不均匀当我尝试执行前者时,显示并在android监视器中抛出以下内容:
跳过36帧!应用程序可能在其主线程上做了太多工作。
经过一些研究后,我意识到我可以运行这个"重处理"在它自己的线索中,但我迷失了如何去做。我对OpenGL渲染相对较新,所以我也不知道我的代码是否也是最优的。
我认为我应该在另一个线程中运行Dice3D.java?这是唯一没有扩展或实现任何内容的类,通过一些研究我发现类需要实现runnable?
提前做好工作的任何帮助都会很棒!
以下是我的课程:
OpenGLRenderer.java
public class OpenGLRenderer implements GLSurfaceView.Renderer {
private Context context;
private Dice3D dice3D;
public OpenGLRenderer(Context context, FrameLayout openGLLayout) {
this.context = context;
dice3D = new Dice3D(context);
GLSurfaceView glView = new GLSurfaceView(context);
glView.setRenderer(this);
//put to welcome layout
openGLLayout.addView(glView, new FrameLayout.LayoutParams(FrameLayout.LayoutParams.MATCH_PARENT, FrameLayout.LayoutParams.MATCH_PARENT));
}
private float mCubeRotation;
@Override
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glClearColor(1.0f, 1.0f, 1.0f, 1.0f); // Set color's clear-value to black
gl.glClearDepthf(1.0f); // Set depth's clear-value to farthest
gl.glEnable(GL10.GL_DEPTH_TEST); // Enables depth-buffer for hidden surface removal
gl.glDepthFunc(GL10.GL_LEQUAL); // The type of depth testing to do
gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); // nice perspective view
gl.glShadeModel(GL10.GL_SMOOTH); // Enable smooth shading of color
gl.glDisable(GL10.GL_DITHER); // Disable dithering for better performance
// Setup Texture, each time the surface is created (NEW)
dice3D.loadTexture(gl); // Load images into textures (NEW)
gl.glEnable(GL10.GL_TEXTURE_2D); // Enable texture (NEW)
}
@Override
public void onDrawFrame(GL10 gl) {
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
gl.glLoadIdentity();
gl.glTranslatef(0.0f, 0.0f, -6.0f);
gl.glRotatef(mCubeRotation, 1.0f, 1.0f, 1.0f);
dice3D.draw(gl);
mCubeRotation -= 0.15f;
}
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0, 0, width, height);
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
gl.glViewport(0, 0, width, height);
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
}
}
Dice3D.java
public class Dice3D {
private FloatBuffer vertexBuffer; // Buffer for vertex-array
private FloatBuffer texBuffer; // Buffer for texture-coords-array (NEW)
private int numFaces = 6;
private int[] imageFileIDs = { // Image file IDs
R.drawable.one,
R.drawable.two,
R.drawable.three,
R.drawable.four,
R.drawable.five,
R.drawable.six
};
private int[] textureIDs = new int[numFaces];
private Bitmap[] bitmap = new Bitmap[numFaces];
// Constructor - Set up the buffers
public Dice3D(Context context) {
// Setup vertex-array buffer. Vertices in float. An float has 4 bytes
ByteBuffer vbb = ByteBuffer.allocateDirect(12 * 4 * numFaces);
vbb.order(ByteOrder.nativeOrder()); // Use native byte order
vertexBuffer = vbb.asFloatBuffer(); // Convert from byte to float
for (int face = 0; face < numFaces; face++) {
bitmap[face] = BitmapFactory.decodeStream(context.getResources().openRawResource(imageFileIDs[face]));
float[] vertices = { // Vertices for a face
-1.0f, -1.0f, 0.0f, // 0. left-bottom-front
1.0f, -1.0f, 0.0f, // 1. right-bottom-front
-1.0f, 1.0f, 0.0f, // 2. left-top-front
1.0f, 1.0f, 0.0f // 3. right-top-front
};
vertexBuffer.put(vertices); // Populate
}
vertexBuffer.position(0); // Rewind
float[] texCoords = { // Texture coords for the above face (NEW)
0.0f, 1.0f, // A. left-bottom (NEW)
1.0f, 1.0f, // B. right-bottom (NEW)
0.0f, 0.0f, // C. left-top (NEW)
1.0f, 0.0f // D. right-top (NEW)
};
// Setup texture-coords-array buffer, in float. An float has 4 bytes (NEW)
ByteBuffer tbb = ByteBuffer.allocateDirect(texCoords.length * 4 * numFaces);
tbb.order(ByteOrder.nativeOrder());
texBuffer = tbb.asFloatBuffer();
for (int face = 0; face < numFaces; face++) {
texBuffer.put(texCoords);
}
texBuffer.position(0);
}
// Draw the shape
public void draw(GL10 gl) {
gl.glFrontFace(GL10.GL_CCW); // Front face in counter-clockwise orientation
gl.glEnable(GL10.GL_CULL_FACE); // Enable cull face
gl.glCullFace(GL10.GL_BACK); // Cull the back face (don't display)
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); // Enable texture-coords-array (NEW)
gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, texBuffer); // Define texture-coords buffer (NEW)
// front
gl.glPushMatrix();
gl.glTranslatef(0.0f, 0.0f, 1.0f);
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
gl.glPopMatrix();
// left
gl.glPushMatrix();
gl.glRotatef(270.0f, 0.0f, 1.0f, 0.0f);
gl.glTranslatef(0.0f, 0.0f, 1.0f);
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
gl.glPopMatrix();
// back
gl.glPushMatrix();
gl.glRotatef(180.0f, 0.0f, 1.0f, 0.0f);
gl.glTranslatef(0.0f, 0.0f, 1.0f);
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
gl.glPopMatrix();
// right
gl.glPushMatrix();
gl.glRotatef(90.0f, 0.0f, 1.0f, 0.0f);
gl.glTranslatef(0.0f, 0.0f, 1.0f);
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
gl.glPopMatrix();
// top
gl.glPushMatrix();
gl.glRotatef(270.0f, 1.0f, 0.0f, 0.0f);
gl.glTranslatef(0.0f, 0.0f, 1.0f);
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
gl.glPopMatrix();
// bottom
gl.glPushMatrix();
gl.glRotatef(90.0f, 1.0f, 0.0f, 0.0f);
gl.glTranslatef(0.0f, 0.0f, 1.0f);
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
gl.glPopMatrix();
gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); // Disable texture-coords-array
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisable(GL10.GL_CULL_FACE);
}
// Load an image into GL texture
public void loadTexture(GL10 gl) {
gl.glGenTextures(6, textureIDs, 0); // Generate texture-ID array for 6 IDs
// Generate OpenGL texture images
for (int face = 0; face < numFaces; face++) {
gl.glBindTexture(GL10.GL_TEXTURE_2D, textureIDs[face]);
// Build Texture from loaded bitmap for the currently-bind texture ID
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap[face], 0);
bitmap[face].recycle();
}
}
}
最后我的活动Welcome.java
public class Welcome extends AppCompatActivity {
LinearLayout l1,l2;
public Button btnsub;
Animation uptodown,downtoup;
@Override
protected void onCreate(Bundle savedInstanceState) {
requestWindowFeature(Window.FEATURE_NO_TITLE);
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_welcome);
FrameLayout openGLLayout = (FrameLayout) findViewById(R.id.frameLayout1);
//creates an openGL surface and renders it to the framelayout in the activity layout
OpenGLRenderer gl3DView = new OpenGLRenderer(this, openGLLayout);
btnsub = (Button)findViewById(R.id.buttonsub);
btnsub.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
Intent test = new Intent(Welcome.this,DiceGame.class);
startActivity(test);
}
});
l1 = (LinearLayout) findViewById(R.id.l1);
l2 = (LinearLayout) findViewById(R.id.l2);
uptodown = AnimationUtils.loadAnimation(this,R.anim.uptodown);
downtoup = AnimationUtils.loadAnimation(this,R.anim.downtoup);
l1.setAnimation(uptodown);
l2.setAnimation(downtoup);
}
}
答案 0 :(得分:1)
在表现方面:
1)学习OpenGL ES 2.0并使用着色器;它是一个更清晰的API,在应用程序和/或驱动程序堆栈中需要更少的混乱。所有新API都是基于着色器的,因此这是一件好事。我不会考虑将OpenGL ES 1.x用于任何新项目,因为从技术角度来看它是一个死胡同。
(2)使用OpenGL ES 2.0或更新版本后,使用缓冲区对象存储顶点数据,并在应用程序开始时或每帧上传数据。在这种情况下它应该不重要(立方体非常简单),但这是一个很好的习惯。