我想将滑块控件添加到 plotly 图形(pic)以同时控制所有元素。
我可以轻松地将滑块控件添加到只有一行的图形。在这种情况下,我将一个图表列表(以dicts的形式)放入数据变量中:
plotly.graph_objs.Figure( data = [plot1,plot2] ,layout = layout)
它的工作非常好。
但是为了在同一个图上绘制多条线,我必须将带有图的列表列表放入数据变量(我有吗?):
plotly.graph_objs.Figure( data = [[plot1.1,plot2.1],[plot1.2,plot2.2]] ,layout = layout)
但是plot.ly仍然期待着词典列表。
条目应该是dict。
的子类
有没有办法使用一个滑块控件同时控制多个元素?
import plotly
import plotly.plotly as py
import numpy as np
plotly.offline.init_notebook_mode()
exp = 2.71
N = 3
x_start = -N
x_end = N
dx = 0.1
y_start = -N
y_end = N
dy = 0.1
x_axis = np.arange(x_start, x_end, dx)
y_axis = np.arange(y_start, y_end, dy)
def pit(offset, x):
pit1 = []
for position in x:
pit1.append(1 - exp**(-36 * (position - offset)**2))
return pit1
def v_x(x):
vx = exp**(-x**2)
return vx
def v_y(x):
vy = 0.5 * exp**(-x**2)
return vy
def density(vx, vy):
den = []
for v1 in vx:
row = []
for v2 in vy:
row.append(v1 * v2)
den.append(row)
return den
vx = v_x(x_axis)
vy = v_y(y_axis)
den = density(vx, vy)
def contour(step=None):
return dict(
type='contour',
z=den,
colorscale=[[0, 'rgb(255,255,255)'], [1, 'rgb(49,163,84)']],
x=x_axis,
y=y_axis,
)
def vy_projection(step):
return dict(
visible=True,
type='scatter',
name=str(step),
marker=dict(color='rgb(255,0,0)'),
yaxis='y2',
x=x_axis,
y=vx * pit(step, x_axis)
)
def vx_projection(step):
return dict(
visible=True,
type='scatter',
name=str(step),
marker=dict(color='rgb(255,0,255)'),
xaxis='x2',
x=vy,
y=y_axis
)
trace1 = [
[vy_projection(step), vx_projection(step)]
for step in np.arange(-3, 3, 0.5)]
for plot in trace1[-1]:
plot['visible'] = True
steps = []
for i in range(len(trace1)):
step = dict(
method='restyle',
args=['visible', [False] * len(trace1)],
)
step['args'][1][i] = True
steps.append(step)
sliders = [dict(
active=10,
currentvalue={"prefix": "Step: "},
pad={"t": len(trace1)},
steps=steps
)]
layout = dict(
autosize=False,
width=500,
height=500,
sliders=sliders,
xaxis=dict(
range=[-3, 3],
),
xaxis2=dict(
domain=[0.9, 1],
showgrid=False,
zeroline=False,
),
yaxis=dict(
range=[-3, 3],
),
yaxis2=dict(
domain=[0.9, 1],
showgrid=False,
zeroline=False,
)
)
data = trace1[0]
fig = go.Figure(data=data, layout=layout)
# plotly.offline.plot(fig, filename='manipulate.html')
plotly.offline.iplot(fig)
答案 0 :(得分:1)
如果使用addTraces方法添加跟踪,则此方法不起作用: https://codepen.io/anon/pen/ydMLyK
const defTraces = [{
x: [1, 2, 3],
y: [2, 1, 3],
visible: true,
line: {color: 'red'}
}, {
x: [1, 2, 3],
y: [3, 2, 4],
visible: true,
line: {color: 'green'}
}, {
x: [1, 2, 3],
y: [4, 3, 5],
visible: true,
line: {color: 'blue'}
},
{
x: [1, 2, 3],
y: [2, 1, 3],
visible: true,
line: {color: 'red'},
xaxis: 'x2',
}, {
x: [1, 2, 3],
y: [3, 2, 4],
visible: true,
line: {color: 'green'},
xaxis: 'x2',
}, {
x: [1, 2, 3],
y: [4, 3, 5],
visible: true,
line: {color: 'blue'},
xaxis: 'x2',
}];
const layout = {
xaxis: {
range: [0, 4],
},
yaxis: {
range: [0, 8],
},
grid: {
rows: 1,
columns: 2,
},
sliders: [{
pad: {
t: 30
},
currentvalue: {
visible: false,
},
steps: [{
label: 'red',
method: 'restyle',
args: ['visible', [true, false, false, true, false, false]]
}, {
label: 'green',
method: 'restyle',
args: ['visible', [false, true, false, false, true, false]]
}, {
label: 'blue',
method: 'restyle',
args: ['visible', [false, false, true, false, false, true]]
}]
}]
};
const traces = [];
Plotly.newPlot(graph, traces, layout);
Plotly.addTraces(graph, defTraces);
//Plotly.newPlot(graph, defTraces, layout);
graph.on('plotly_sliderchange', (event) => {
console.log(event.slider.steps[0].args);
})