我的数据框daily
看起来像这样
import pandas as pd
daily
time_stamp 22 72 79 86 87 88 90
2013-10-01 0.000000 0.000 8.128000 0.254 0.000000 0.000000 0.000000
2013-10-01 0.000000 0.000 8.128000 0.254 0.000000 0.000000 0.000000
2013-10-02 0.000000 0.000 0.000000 0.000 0.000000 0.000000 0.000000
2013-10-04 0.000000 0.000 0.000000 0.000 2.540000 0.762000 0.000000
2013-10-08 2.286000 0.000 0.000000 1.016 1.016000 0.254000 0.000000
2013-10-11 2.794000 0.000 0.000000 0.000 3.810000 1.016000 0.762000
2013-10-12 1.524000 0.000 0.000000 2.286 5.588000 0.254000 26.41600
2013-10-13 0.762000 0.000 8.890000 0.000 2.540000 1.270000 4.572000
2013-10-14 1.524000 0.000 0.000000 0.000 2.540000 4.064000 0.000000
2013-10-15 0.000000 0.000 0.000000 0.000 0.000000 0.000000 0.000000
2013-10-16 0.000000 3.810 1.524000 3.048 0.508000 0.762000 5.080000
2013-10-17 0.000000 0.000 0.254000 0.000 0.000000 0.000000 0.508000
2013-10-18 8.128000 0.762 4.826000 0.508 7.366000 4.572000 1.524000
2013-10-19 8.382000 0.254 0.000000 0.000 6.858000 16.510000 2.032000
2013-10-20 0.000000 0.000 0.000000 0.000 4.064000 5.842000 0.000000
2013-10-21 0.000000 0.508 0.000000 0.000 1.016000 0.000000 0.000000
2013-10-22 2.794000 2.540 1.016000 0.000 0.508000 15.748000 0.000000
我想对大于0的值进行汇总统计,describe()
。
问题是如果我使用命令dailyrf = daily[(daily > 0.).any(1)]
,当我执行dailyrf.describe()
时,仍会包含带零的行。或者,当我执行dailyrf = daily[(daily > 0.).all(1)]
时,它仅返回在所有行中具有> 0值的行。
我还尝试了daily[daily==0] = 'NaN'
,它给了我一条警告信息:“正在尝试在DataFrame的切片副本上设置值。
尝试使用.loc [row_indexer,col_indexer] = value而不是
请参阅文档中的警告:http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy 这与ipykernel包是分开的,因此我们可以避免在“。
之前进行导入这不是解决方案,因为describe
函数返回此:
22 72 79 86 87 88 90 93 95 96 97
count 720 684 721 719 718 720 720 721 720 720 719
unique 103 80 73 64 80 108 112 108 86 113 98
top NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
freq 470 494 560 510 539 483 486 441 570 474 476
我真正想要的是每列中大于0的所有值的均值,标准偏差等。
答案 0 :(得分:2)
修复代码通知NaN!='NaN'
df[df==0] = np.nan
df.describe()
Out[696]:
22 72 79 86 87 88 90
count 8.000000 5.000000 7.000000 6.000000 12.000000 11.000000 7.00000
mean 3.524250 1.574800 4.680857 1.227667 3.196167 4.641273 5.84200
std 3.000573 1.538745 3.752722 1.174092 2.391229 5.992560 9.24574
min 0.762000 0.254000 0.254000 0.254000 0.508000 0.254000 0.50800
25% 1.524000 0.508000 1.270000 0.317500 1.016000 0.762000 1.14300
50% 2.540000 0.762000 4.826000 0.762000 2.540000 1.270000 2.03200
75% 4.127500 2.540000 8.128000 1.968500 4.445000 5.207000 4.82600
max 8.382000 3.810000 8.890000 3.048000 7.366000 16.510000 26.41600