给出
$response.RawContent.Split("`n")[0..20]
HTTP/1.1 200 OK
Transfer-Encoding: chunked
Connection: keep-alive
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Pragma: no-cache
X-Content-Type-Options: nosniff
CF-Cache-Status: HIT
CF-RAY: 3c4e3f804f9d82f7-ATL
Cache-Control: public, max-age=14400
Content-Type: application/json; charset=utf-8
Date: Tue, 28 Nov 2017 15:09:23 GMT
Expires: Tue, 28 Nov 2017 19:09:23 GMT
ETag: W/"6b80-Ybsq/K6GwwqrYkAsFxqDXGC7DoM"
Set-Cookie: __cfduid=d84018de2d621df9d53eb52d97cd33a651511881763; expires=Wed, 28-Nov-18 15:09:23 GMT; path=/; domain=.typicode.com; HttpOnly
Server: cloudflare-nginx
Via: 1.1 vegur
X-Powered-By: Express
有没有办法按x = data.frame(value = 1:3, col2 = c('min', 'min', 'max'), id = c(1, 2, 1))
分组,然后平均col3
和min
然后将结果存储在max
?
col1
答案 0 :(得分:1)
如果您只有这三列,并且每组只有2个值(最小和最大),那么,
library(dplyr)
x %>%
group_by(col3) %>%
summarise(col1 = mean(col1), col2 = 'Average') %>%
bind_rows(x) %>%
arrange(col3)
给出,
# A tibble: 5 x 3 col3 col1 col2 <dbl> <dbl> <chr> 1 1 2 Average 2 1 1 min 3 1 3 max 4 2 2 Average 5 2 2 min
答案 1 :(得分:0)
我认为你正在寻找这个:
library(dplyr)
x = data.frame(value = 1:3, col2 = c('min', 'min', 'max'), id = c(1, 2, 1))
x %>% group_by(id) %>% summarize(avg=mean(value)
这会为您提供所需的值,但不会将它们附加到您的数据框中。
在这几个背景下,我不确定你应该这样做,但如果你真的想,你可以rbind
。