用keras训练花卉数据集上的vgg,验证损失不变

时间:2017-11-27 03:23:31

标签: deep-learning keras training-data loss convergence

我正在使用keras对VGG网络进行一些小实验。 我使用的数据集是花卉数据集,有5个类别,包括玫瑰,向日葵,蒲公英,郁金香和雏菊。

有些事情我无法弄清楚: 当我使用一个小的CNN网络(不是VGG,在下面的代码中)时,它快速收敛并且在仅仅大约8个时期之后达到了大约75%的验证准确度。

然后我切换到VGG网络(代码中注释掉的区域)。网络的损失和准确性根本没有改变,输出如下:

  

大纪元1/50 402/401 [==============================] - 199s 495ms /步 - 损失: 13.3214 - acc:0.1713 - val_loss:13.0144 - val_acc:0.1926

     

大纪元2/50   402/401 [==============================] - 190s 473ms /步 - 损失:13.3473 - acc:0.1719 - val_loss :13.0144 - val_acc:0.1926

     

大纪元3/50   402/401 [==============================] - 204s 508ms /步 - 损失:13.3423 - acc:0.1722 - val_loss :13.0144 - val_acc:0.1926

     

大纪元4/50   402/401 [==============================] - 190s 472ms /步 - 损失:13.3522 - acc:0.1716 - val_loss :13.0144 - val_acc:0.1926

     

大纪元5/50   402/401 [==============================] - 189s 471ms /步 - 损失:13.3364 - acc:0.1726 - val_loss :13.0144 - val_acc:0.1926

     

大纪元6/50   402/401 [==============================] - 189s 471ms /步 - 损失:13.3453 - acc:0.1720 - val_loss :13.0144 - val_acc:0.1926   大纪元7/50

     

Epoch 7/50 402/401 [==============================] - 189s 471ms /步 - 损失: 13.3503 - acc:0.1717 - val_loss:13.0144 - val_acc:0.1926

PS:我也用其他数据集和框架进行了这个实验(带有tensorflow和slim的place365数据集)。结果是一样的。我已经研究过VGG论文(Simonyan& Zisserman),它说有很多阶段需要训练像VGG这样的深层网络,比如从A阶段到E阶段,不同的网络结构。我不确定是否必须按照VGG文件中描述的方式训练我的VGG网络。其他在线课程也没有提到这个复杂的培训过程。 有人有什么想法吗?

我的代码:

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K


# dimensions of our images.
img_width, img_height = 224, 224

train_data_dir = './data/train'
validation_data_dir = './data/val'
nb_train_samples = 3213
nb_validation_samples = 457
epochs = 50
batch_size = 8

if K.image_data_format() == 'channels_first':
    input_shape = (3, img_width, img_height)
else:
    input_shape = (img_width, img_height, 3)

# random cnn model: 
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(5))
model.add(Activation('softmax'))

# vgg model:
'''model = Sequential([
    Conv2D(64, (3, 3), input_shape=input_shape, padding='same',
           activation='relu'),
    Conv2D(64, (3, 3), activation='relu', padding='same'),
    MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
    Conv2D(128, (3, 3), activation='relu', padding='same'),
    Conv2D(128, (3, 3), activation='relu', padding='same',),
    MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
    Conv2D(256, (3, 3), activation='relu', padding='same',),
    Conv2D(256, (3, 3), activation='relu', padding='same',),
    Conv2D(256, (3, 3), activation='relu', padding='same',),
    MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
    Conv2D(512, (3, 3), activation='relu', padding='same',),
    Conv2D(512, (3, 3), activation='relu', padding='same',),
    Conv2D(512, (3, 3), activation='relu', padding='same',),
    MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
    Conv2D(512, (3, 3), activation='relu', padding='same',),
    Conv2D(512, (3, 3), activation='relu', padding='same',),
    Conv2D(512, (3, 3), activation='relu', padding='same',),
    MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
    Flatten(),
    Dense(256, activation='relu'),
    Dense(256, activation='relu'),
    Dense(5, activation='softmax')
])'''


model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=nb_validation_samples // batch_size)

model.save_weights('flowers.h5')

0 个答案:

没有答案