我是opencv的初学者,我试图从我的项目的图片中裁剪单个面,但无法裁剪图片中的所有面孔。 可以做些什么来检测所有面并裁剪它们以移动到文件夹? 从输入文件夹中获取图像并将裁剪后的图像发布到输出文件夹。
import numpy as np
import cv2
import os, os.path
#multiple cascades: https://github.com/Itseez/opencv/tree/master/data/haarcascades
#https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
face_cascade = cv2.CascadeClassifier('faces.xml')
#https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml
eye_cascade = cv2.CascadeClassifier('eye.xml')
DIR = 'input'
numPics = len([name for name in os.listdir(DIR) if os.path.isfile(os.path.join(DIR, name))])
for pic in range(1, (numPics+1)):
img = cv2.imread('input/'+str(pic)+'.jpg')
height = img.shape[0]
width = img.shape[1]
size = height * width
if size > (500^2):
r = 500.0 / img.shape[1]
dim = (500, int(img.shape[0] * r))
img2 = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
img = img2
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
eyesn = 0
for (x,y,w,h) in faces:
imgCrop = img[y:y+h,x:x+w]
#cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
#cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
eyesn = eyesn +1
if eyesn >= 2:
cv2.imwrite("output/crop"+str(pic)+".jpg", imgCrop)
#cv2.imshow('img',imgCrop)
print("Image"+str(pic)+" has been processed and cropped")
k = cv2.waitKey(30) & 0xff
if k == 27:
break
#cap.release()
print("All images have been processed!!!")
cv2.destroyAllWindows()
cv2.destroyAllWindows()
如何裁剪图片中的所有面孔以保存在文件夹中?
答案 0 :(得分:3)
#### the counter
cnt = 0
for pic in range(1, (numPics+1)):
img = cv2.imread('input/'+str(pic)+'.jpg')
height = img.shape[0]
width = img.shape[1]
size = height * width
if size > (500^2):
r = 500.0 / img.shape[1]
dim = (500, int(img.shape[0] * r))
img2 = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
img = img2
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
eyesn = 0
imgCrop = img[y:y+h,x:x+w]
#cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
#cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
eyesn = eyesn +1
if eyesn >= 2:
#### increase the counter and save
cnt +=1
cv2.imwrite("output/crop{}_{}.jpg".format(pic, cnt), imgCrop)
#cv2.imshow('img',imgCrop)
print("Image"+str(pic)+" has been processed and cropped")
k = cv2.waitKey(100) & 0xff
if k == 27:
break
#cap.release()
print("All images have been processed!!!")
cv2.destroyAllWindows()
cv2.destroyAllWindows()
答案 1 :(得分:0)
你说你被单面试过了。你有成功吗?执行给定代码后您得到的错误是什么?