我的csv文件中有4列和多行。
Date(MM/DD/YY) Arr_Dep Dom_Int Num_Fl
01/01/15 0:00 Arrival Domestic 357
03/01/15 0:00 Arrival International 269
06/01/15 0:00 Departure Domestic 82
08/01/15 0:00 Departure International 5
05/01/16 0:00 Arrival Domestic 44
06/01/16 0:00 Arrival Domestic 57
07/01/16 0:00 Departure International 51
08/01/16 0:00 Departure International 40
08/01/17 0:00 Arrival Domestic 1996
10/01/17 0:00 Departure International 21
我必须找到特定年份每月的平均航班数,具体取决于航班是抵达还是离开。所以我期望输出的输出是:
2015, arrival, 313
2015, departure, 44
2016, arrival, 51
2016, departure, 46
2017, arrival, 1996
2017, departure, 21
我面临的问题是我应该如何在我的键中包含两列,即我的map函数中的Arr_Dep和Date列,以最终减少它以获得平均值。 到目前为止我写了以下脚本。不知道如何继续
from pyspark import SparkContext
from operator import add
import sys
sc = SparkContext(appName="example")
input_file = sys.argv[1]
lines = sc.textFile(input_file)
first = lines.map(lambda x : ((x.split(",")[0].split(" ")[0][5:]).encode('ascii','ignore'), int(x.split(",")[-1]), x.split(",")[1]))
second = first.filter(lambda x : "Arrival" in x[1] or "Departure" in x[1])
third = second.map(lambda x : (x[0],x[1]))
result = third.reduceByKey("Not sure how to calculate average")
output = result.collect()
for v in sorted(output, key = lambda x:x[0]):
print '%s, %s' % (v[0], v[1])
我不确定上面的脚本。我是spark和python的新手。任何想法如何进行?
答案 0 :(得分:0)
最好使用SQL
API:
from pyspark.sql.functions import *
df = spark.read.options(inferSchema=True, header=True).csv(input_file)
df\
.groupBy(year(to_date("Date(MM/DD/YY)", "MM/dd/yyH:mm")).alias("year"), "Arr_Dep")\
.avg("Num_Fl")