我目前正在尝试比较一些RNN,我只有LSTM的问题,我不明白为什么。
我正在使用相同的代码/数据集训练LSTM,SimpleRNN和GRU。对于他们所有人来说,损失正常减少。但是对于LSTM,在某一点(损失约0.4)之后,损失直接降至10e-8。如果我试图预测输出,我只有Nan。
这是代码:
nb_unit = 7
inp_shape = (maxlen, 7)
loss_ = "categorical_crossentropy"
metrics_ = "categorical_crossentropy"
optimizer_ = "Nadam"
nb_epoch = 250
batch_size = 64
model = Sequential()
model.add(LSTM( units=nb_unit,
input_shape=inp_shape,
return_sequences=True,
activation='softmax')) # I just change the cell name
model.compile(loss=loss_,
optimizer=optimizer_,
metrics=[metrics_])
checkpoint = ModelCheckpoint("lstm_simple.h5",
monitor=loss_,
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto',
period=1)
early = EarlyStopping( monitor='loss',
min_delta=0,
patience=10,
verbose=1,
mode='auto')
history = model.fit(X_train, y_train,
validation_data=(X_test, y_test),
epochs=nb_epoch,
batch_size=batch_size,
verbose=2,
callbacks = [checkpoint, early])
这是GRU和LSTM的输出,具有相同的输入:
Input :
[[[1 0 0 0 0 0 0]
[0 1 0 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 1 0 0 0]
[0 1 0 0 0 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 1 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 1 0 0]
[0 0 0 1 0 0 0]
[0 1 0 0 0 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 1 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 0]
[0 0 0 0 0 0 0]
[0 0 0 0 0 0 0]]]
LSTM predicts :
[[[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]
[ nan nan nan nan nan nan nan]]]
GRU predicts :
[[[ 0. 0.54 0. 0. 0.407 0. 0. ]
[ 0. 0.005 0.66 0.314 0. 0. 0.001]
[ 0. 0.001 0.032 0.957 0. 0.004 0. ]
[ 0. 0.628 0. 0. 0. 0.372 0. ]
[ 0. 0.555 0. 0. 0. 0.372 0. ]
[ 0. 0. 0. 0. 0.996 0.319 0. ]
[ 0. 0. 0.167 0.55 0. 0. 0. ]
[ 0. 0.486 0. 0.002 0. 0.51 0. ]
[ 0. 0.001 0. 0. 0.992 0.499 0. ]
[ 0. 0. 0.301 0.55 0. 0. 0. ]
[ 0. 0.396 0.001 0.007 0. 0.592 0. ]
[ 0. 0.689 0. 0. 0. 0.592 0. ]
[ 0. 0.001 0. 0. 0.997 0.592 0. ]
[ 0. 0. 0.37 0.55 0. 0. 0. ]
[ 0. 0.327 0.003 0.025 0. 0.599 0. ]
[ 0. 0.001 0. 0. 0.967 0.599 0.002]
[ 0. 0. 0. 0. 0. 0.002 0.874]
[ 0.004 0.076 0.128 0.337 0.02 0.069 0.378]
[ 0.006 0.379 0.047 0.113 0.029 0.284 0.193]
[ 0.006 0.469 0.001 0.037 0.13 0.295 0.193]]]
对于损失,您可以在fit()历史的最后几行下面找到:
Epoch 116/250
Epoch 00116: categorical_crossentropy did not improve
- 2s - loss: 0.3774 - categorical_crossentropy: 0.3774 - val_loss: 0.3945 - val_categorical_crossentropy: 0.3945
Epoch 117/250
Epoch 00117: categorical_crossentropy improved from 0.37673 to 0.08198, saving model to lstm_simple.h5
- 2s - loss: 0.0820 - categorical_crossentropy: 0.0820 - val_loss: 7.8743e-08 - val_categorical_crossentropy: 7.8743e-08
Epoch 118/250
Epoch 00118: categorical_crossentropy improved from 0.08198 to 0.00000, saving model to lstm_simple.h5
- 2s - loss: 7.5460e-08 - categorical_crossentropy: 7.5460e-08 - val_loss: 7.8743e-08 - val_categorical_crossentropy: 7.8743e-08
或基于时代的损失的演变。
我以前尝试过没有Softmax和MSE作为丢失功能,我没有收到任何错误。
如果需要,您可以找到笔记本和脚本以在Github上生成数据集(https://github.com/Coni63/SO/blob/master/Reber.ipynb)。
非常感谢你的支持, 问候, 尼古拉斯
根本原因似乎是Softmax功能消失了。如果我在它崩溃之前停下来并显示每个时间步的softmax总和:
LSTM :
[[ 0.112]
[ 0.008]
[ 0.379]
[ 0.04 ]
[ 0.001]
[ 0.104]
[ 0.021]
[ 0. ]
[ 0.104]
[ 0.343]
[ 0.012]
[ 0. ]
[ 0.23 ]
[ 0.13 ]
[ 0.147]
[ 0.145]
[ 0.152]
[ 0.157]
[ 0.163]
[ 0.169]]
GRU :
[[ 0.974]
[ 0.807]
[ 0.719]
[ 1.184]
[ 0.944]
[ 0.999]
[ 1.426]
[ 0.957]
[ 0.999]
[ 1.212]
[ 1.52 ]
[ 0.954]
[ 0.42 ]
[ 0.83 ]
[ 0.903]
[ 0.944]
[ 0.976]
[ 1.005]
[ 1.022]
[ 1.029]]
Softmax为0时,下一步将尝试除以0.现在我不知道如何修复它。
答案 0 :(得分:1)
我发布我当前的解决方案,以防其他人在将来遇到此问题。
为了避免消失,我添加了一个简单的完全连接图层,其输出大小与输入相同,然后才能正常工作。该层允许LSTM / GRU / SRNN输出的另一个“配置”,并避免输出消失。
这是最终代码:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
namespace CapsLockChecker
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
Application.Idle += Application_Idle;
}
private void Form1_Load(object sender, EventArgs e)
{
}
void Application_Idle(object sender, EventArgs e)
{
if (Control.IsKeyLocked(Keys.CapsLock))
{
label1.Text = "CapsLock is On";
pictureBox1.ImageLocation = "C:\\Users\\user\\source\\repos\\CapsLockChecker\\CapsLockChecker\\if_Circle_Green_34211.png";
}
else
{
label1.Text = "CapsLock if Off";
pictureBox1.ImageLocation = "C:\\Users\\user\\source\\repos\\CapsLockChecker\\CapsLockChecker\\if_Circle_Red_34214.png";
}
}
protected override void OnFormClosed(FormClosedEventArgs e)
{
Application.Idle -= Application_Idle;
base.OnFormClosed(e);
}
}
}
我希望这可以帮助别人:)