检查pandas中的特定值(在单元格中)是否为NaN DataFrame无法使用ix或iloc

时间:2017-11-22 16:53:20

标签: python pandas dataframe nan

假设我已关注pandas DataFrame

import pandas as pd
df = pd.DataFrame({"A":[1,pd.np.nan,2], "B":[5,6,0]})

看起来像是:

>>> df
     A  B
0  1.0  5
1  NaN  6
2  2.0  0

第一个选项

我知道一种检查特定值是否为NaN的方法,如下所示:

>>> df.isnull().ix[1,0]
True

第二个选项(不工作)

我认为以下选项,使用ix,也可以,但不是:

>>> df.ix[1,0]==pd.np.nan
False

我也试过了iloc,结果相同:

>>> df.iloc[1,0]==pd.np.nan
False

但是,如果我使用ixiloc检查这些值,我会得到:

>>> df.ix[1,0]
nan
>>> df.iloc[1,0]
nan

那么,为什么第二个选项不起作用?是否可以使用NaNix检查iloc值?

3 个答案:

答案 0 :(得分:25)

试试这个:

In [107]: pd.isnull(df.iloc[1,0])
Out[107]: True

答案 1 :(得分:1)

以上答案非常好。为了更好地理解,这里有一个示例。

>>> import pandas as pd
>>>
>>> import numpy as np
>>>
>>> pd.Series([np.nan, 34, 56])
0     NaN
1    34.0
2    56.0
dtype: float64
>>>
>>> s = pd.Series([np.nan, 34, 56])
>>> pd.isnull(s[0])
True
>>>

我也尝试了几次,但以下的尝试没有用。感谢@MaxU

>>> s[0]
nan
>>>
>>> s[0] == np.nan
False
>>>
>>> s[0] is np.nan
False
>>>
>>> s[0] == 'nan'
False
>>>
>>> s[0] == pd.np.nan
False
>>>

答案 2 :(得分:1)

pd.isna(cell_value)可用于检查给定的单元格值是否为nan。或者,pd.notna(cell_value)检查相反的内容。

来自熊猫的源代码:

def isna(obj):
    """
    Detect missing values for an array-like object.

    This function takes a scalar or array-like object and indicates
    whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN``
    in object arrays, ``NaT`` in datetimelike).

    Parameters
    ----------
    obj : scalar or array-like
        Object to check for null or missing values.

    Returns
    -------
    bool or array-like of bool
        For scalar input, returns a scalar boolean.
        For array input, returns an array of boolean indicating whether each
        corresponding element is missing.

    See Also
    --------
    notna : Boolean inverse of pandas.isna.
    Series.isna : Detect missing values in a Series.
    DataFrame.isna : Detect missing values in a DataFrame.
    Index.isna : Detect missing values in an Index.

    Examples
    --------
    Scalar arguments (including strings) result in a scalar boolean.

    >>> pd.isna('dog')
    False

    >>> pd.isna(np.nan)
    True