我想知道什么内在函数使SIMD比正常的矩阵乘法更慢,我该怎么做才能使用SIMD更快地乘以大矩阵。在这里,我们有matrixA[8][8]
,matrixB[8][8]
和结果matrixC[8][8]
。因为float32_t的最大元素数是4,所以我做了2个vmul和vadd,它们似乎没有得到优化。我在ARMv7-A Cortex A8上工作。
void matrix_mult_neon (void)
{
int i;
float32x4x2_t vectB1, vectB2, vectB3, vectB4, vectB5, vectB6, vectB7, vectB8;
vectB1 = vld2q_f32(matrixB[0]);
vectB2 = vld2q_f32(matrixB[1]);
vectB3 = vld2q_f32(matrixB[2]);
vectB4 = vld2q_f32(matrixB[3]);
vectB5 = vld2q_f32(matrixB[4]);
vectB6 = vld2q_f32(matrixB[5]);
vectB7 = vld2q_f32(matrixB[6]);
vectB8 = vld2q_f32(matrixB[7]);
float32x4x2_t vectT1, vectT2, vectT3, vectT4, vectT5, vectT6, vectT7, vectT8;
for (i = 0; i < 8; i++)
{
vectT1.val[0] = vmulq_n_f32(vectB1.val[0], matrixA[i][0]);
vectT1.val[1] = vmulq_n_f32(vectB1.val[1], matrixA[i][0]);
vectT2.val[0] = vmulq_n_f32(vectB2.val[0], matrixA[i][1]);
vectT2.val[1] = vmulq_n_f32(vectB2.val[1], matrixA[i][1]);
vectT3.val[0] = vmulq_n_f32(vectB3.val[0], matrixA[i][2]);
vectT3.val[1] = vmulq_n_f32(vectB3.val[1], matrixA[i][2]);
vectT4.val[0] = vmulq_n_f32(vectB4.val[0], matrixA[i][3]);
vectT4.val[1] = vmulq_n_f32(vectB4.val[1], matrixA[i][3]);
vectT5.val[0] = vmulq_n_f32(vectB5.val[0], matrixA[i][4]);
vectT5.val[1] = vmulq_n_f32(vectB5.val[1], matrixA[i][4]);
vectT6.val[0] = vmulq_n_f32(vectB6.val[0], matrixA[i][5]);
vectT6.val[1] = vmulq_n_f32(vectB6.val[1], matrixA[i][5]);
vectT7.val[0] = vmulq_n_f32(vectB7.val[0], matrixA[i][6]);
vectT7.val[1] = vmulq_n_f32(vectB7.val[1], matrixA[i][6]);
vectT8.val[0] = vmulq_n_f32(vectB8.val[0], matrixA[i][7]);
vectT8.val[1] = vmulq_n_f32(vectB8.val[1], matrixA[i][7]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT2.val[0]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT3.val[0]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT4.val[0]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT5.val[0]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT6.val[0]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT7.val[0]);
vectT1.val[0] = vaddq_f32(vectT1.val[0], vectT8.val[0]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT2.val[1]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT3.val[1]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT4.val[1]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT5.val[1]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT6.val[1]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT7.val[1]);
vectT1.val[1] = vaddq_f32(vectT1.val[1], vectT8.val[1]);
vst2q_f32(matrixC_neon[i], vectT1);
}
}
我的常规矩阵乘法函数:
void matrix_mult (void)
{
float tempProduct;
int i, j, k;
for (i = 0; i < 8; i++)
{
for (j = 0; j < 8; j++)
{
tempProduct = 0;
for (k = 0; k < 8; k++)
{
tempProduct = tempProduct + matrixA[i][k] * matrixB[k][j];
}
matrixC[i][j] = tempProduct;
}
}
}
我在库gettimeofday()
中使用<sys/time.h>
函数来计算以纳秒为单位的时间。
答案 0 :(得分:4)
问题:
aarch32
有一个大小为256字节的NEON寄存器库VFP
加载Mat A. VFP
Cortex-A8
上的NEON
特别慢,VFP
&lt; - &gt; static __always_inline float32x2_t dotProduct(float32x4x2_t input1, float32x4x2_t input2)
{
float32x2_t d0, d1;
float32x4_t q0;
input1.val[0] = vmulq_f32(input1.val[0], input2.val[0]);
input1.val[1] = vmulq_f32(input1.val[1], input2.val[1]);
q0 = vaddq_f32(input1.val[0], input1.val[1]);
d0 = vget_low_f32(q0);
d1 = vget_high_f32(q0);
d0 = vpadd_f32(d0, d1);
d0 = vpadd_f32(d0, d1);
return d0;
}
void matMulF_neon(float *pDst, float *pMatA, float *pMatB)
{
float32x4x4_t line01, line23, line45, line67;
float32x4x2_t b[8], *pA, *pB, temp;
float32x2x4_t result;
uint32_t i;
// vld4 for easier transpose
line01 = vld4q_f32(pMatB++);
line23 = vld4q_f32(pMatB++);
line45 = vld4q_f32(pMatB++);
line67 = vld4q_f32(pMatB);
// transpose MatB
vuzpq_f32(line01.val[0], line45.val[0]);
vuzpq_f32(line01.val[1], line45.val[1]);
vuzpq_f32(line01.val[2], line45.val[2]);
vuzpq_f32(line01.val[3], line45.val[3]);
vuzpq_f32(line23.val[0], line67.val[0]);
vuzpq_f32(line23.val[1], line67.val[1]);
vuzpq_f32(line23.val[2], line67.val[2]);
vuzpq_f32(line23.val[3], line67.val[3]);
// store MatB to stack
b[0].val[0] = line01.val[0];
b[0].val[1] = line01.val[1];
b[1].val[0] = line01.val[2];
b[1].val[1] = line01.val[3];
b[2].val[0] = line23.val[0];
b[2].val[1] = line23.val[1];
b[3].val[0] = line23.val[2];
b[3].val[1] = line23.val[3];
b[4].val[0] = line45.val[0];
b[4].val[1] = line45.val[1];
b[5].val[0] = line45.val[2];
b[5].val[1] = line45.val[3];
b[6].val[0] = line67.val[0];
b[6].val[1] = line67.val[1];
b[7].val[0] = line67.val[2];
b[7].val[1] = line67.val[3];
pA = (float32x4x2_t *) pMatA;
i = 8;
do
{
// just the right amount of data for aarch32 NEON register bank size
pB = b;
temp = *pA++;
result.val[0] = dotProduct(*pB++, temp);
result.val[1] = dotProduct(*pB++, temp);
result.val[2] = dotProduct(*pB++, temp);
result.val[3] = dotProduct(*pB++, temp);
vst4_lane_f32(pDst++, result, 0);
result.val[0] = dotProduct(*pB++, temp);
result.val[1] = dotProduct(*pB++, temp);
result.val[2] = dotProduct(*pB++, temp);
result.val[3] = dotProduct(*pB, temp);
vst4_lane_f32(pDst++, result, 0);
} while (--i);
}
转换开销。与自动矢量化不同,内在功能与您告诉它的方式完全相同。你给了错误的指示。解决方案:
我们转置矩阵B并逐行进行点积数学。
我希望下面的代码适合您,如果性能至关重要,请考虑编写汇编,因为编译器在NEON性能方面不是很值得信赖,即使在内在函数中也是如此。
if [ $# -eq 0 -o $# -gt 2 ]
^
///////////////////////////编辑
我检查了反汇编,生成的代码是FUBAR。 (Linaro GCC 7.1.1)
我会去装配路线。在内在函数中编写NEON代码纯粹是浪费时间IMO。