我正在使用plotly构建一个Shiny应用程序,并且需要根据许多参数过滤数据。目前我在data.table中使用一个标志,通过引用更新。实际数据有很多列,我非常喜欢可扩展的方法来添加列以进行可视化。我在一个方面做得很短:基于数值实际过滤数据。
我将要过滤的列的名称存储在一个字符数组中,但似乎我不能使用它来定义选择行的表达式(即i表达式)。这可能吗?或者我是以错误的方式接近这个?
library(data.table)
set.seed(12345)
dt = data.table(mtcars)
dt[,filtered := FALSE]
filterColumnNames = c('cyl','gear','carb')
filterValues = list(cyl = c(4,6),
gear = c(3),
carb = c(1))
for (columnName in filterColumnNames) {
dt[columnName %in% filterValues[columnName][[1]], filtered := TRUE]
}
# Working, but not loopy enough.
# dt[cyl %in% filterValues['cyl'][[1]], filtered := TRUE]
# dt[gear %in% filterValues['gear'][[1]], filtered := TRUE]
# dt[carb %in% filterValues['carb'][[1]], filtered := TRUE]
print(dt)
答案 0 :(得分:2)
原因是columnName
未评估%in%
以获取该列的值。我们可以使用get
for (columnName in filterColumnNames) {
dt[get(columnName) %in% filterValues[columnName][[1]], filtered := TRUE][]
}
或eval(as.name(
for (columnName in filterColumnNames) {
dt[eval(as.name(columnName)) %in% filterValues[columnName][[1]], filtered := TRUE][]
}
答案 1 :(得分:2)
实现此目的的另一种方法是使用 join 来选择行:
library(data.table)
dt <- as.data.table(mtcars)
filterValues <- list(cyl = c(4,6),
gear = c(3),
carb = c(1))
dt[do.call(CJ, filterValues), on = names(filterValues), filtered := TRUE][]
mpg cyl disp hp drat wt qsec vs am gear carb filtered 1: 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 NA 2: 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 NA 3: 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 NA 4: 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 TRUE 5: 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 NA 6: 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 TRUE 7: 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 NA 8: 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 NA 9: 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 NA 10: 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 NA 11: 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 NA 12: 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 NA 13: 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 NA 14: 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 NA 15: 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 NA 16: 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 NA 17: 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 NA 18: 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 NA 19: 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 NA 20: 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 NA 21: 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 TRUE 22: 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 NA 23: 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 NA 24: 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 NA 25: 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 NA 26: 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 NA 27: 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 NA 28: 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 NA 29: 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 NA 30: 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 NA 31: 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 NA 32: 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 NA mpg cyl disp hp drat wt qsec vs am gear carb filtered
或
dt <- as.data.table(mtcars)
dt[do.call(CJ, filterValues), on = names(filterValues), nomatch = 0L]
mpg cyl disp hp drat wt qsec vs am gear carb 1: 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 2: 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 3: 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
您只需指定filterValues
的列表。 do.call(CJ, filterValues)
(交叉连接)创建一个data.table,其中包含所有组合以按以下方式选择行:
cyl gear carb 1: 4 3 1 2: 6 3 1
OP可以asked,如果这可以扩展到不平等。
这可以使用data.table
的非等联接来完成,但设置稍有不同。如,
filterIntervals <- list(disp = c(200, 300),
mpg = c(10, 20))
mDT <- dcast(melt(filterIntervals), . ~ L1 + rowid(L1))
filterCondition <- c("disp>=disp_1", "disp<disp_2", "mpg>mpg_1", "mpg<mpg_2")
dt[mDT, on = filterCondition, filtered := TRUE][]
mpg cyl disp hp drat wt qsec vs am gear carb filtered 1: 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 NA 2: 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 NA 3: 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 NA 4: 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 NA 5: 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 NA 6: 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 TRUE 7: 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 NA 8: 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 NA 9: 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 NA 10: 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 NA 11: 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 NA 12: 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 TRUE 13: 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 TRUE 14: 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 TRUE 15: 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 NA 16: 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 NA 17: 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 NA 18: 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 NA 19: 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 NA 20: 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 NA 21: 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 NA 22: 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 NA 23: 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 NA 24: 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 NA 25: 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 NA 26: 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 NA 27: 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 NA 28: 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 NA 29: 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 NA 30: 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 NA 31: 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 NA 32: 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 NA mpg cyl disp hp drat wt qsec vs am gear carb filtered
答案 2 :(得分:1)
您可以根据要应用的过滤条件创建角色向量。请参阅以下示例:
strerror()