从pandas列中删除字符串,取决于另一列

时间:2017-11-19 12:44:46

标签: python pandas

我有一个示例数据框:

      col1                                   col2  
0     Hello, is it me you're looking for     Hello   
1     Hello, is it me you're looking for     me 
2     Hello, is it me you're looking for     looking 
3     Hello, is it me you're looking for     for   
4     Hello, is it me you're looking for     Lionel  
5     Hello, is it me you're looking for     Richie   

我想更改col1,以便删除col2中的字符串,并返回修改后的数据帧。我还想删除字符串之前和之后的字符1,例如,索引1的所需输出将是:

      col 1                                   col 2
1     Hello, is ityou're looking for          me

我尝试使用pd.apply()pd.map()使用.replace()函数,但我无法让.replace()使用pd.['col2']作为参数。我也觉得好像不是最好的方法。

有任何帮助吗?我大部分都是熊猫新手,我正在学习,所以请ELI5。

谢谢!

3 个答案:

答案 0 :(得分:1)

我的猜测是,你错过了"轴= 1"所以申请不在列上但在行上

A = """Hello, is it me you're looking for;Hello
Hello, is it me you're looking for;me
Hello, is it me you're looking for;looking
Hello, is it me you're looking for;for
Hello, is it me you're looking for;Lionel
Hello, is it me you're looking for;Richie
"""
df = pd.DataFrame([a.split(";") for a in A.split("\n") ][:-1],
                   columns=["col1","col2"])

df.col1 = df.apply( lambda x: x.col1.replace( x.col2, "" )  , axis=1)

答案 1 :(得分:1)

为数据帧中的每一行做一些函数可以使用:

df.apply(func, axis=1)

func将每行作为参数

作为系列

删除col2中出现的col1可以简单地通过

df['col1'] = df.apply(lambda row: row['col1'].replace(row['col2'],'')

但是前面和前面有1个字符,需要更多的工作

所以定义func:

def func(row):
    c1 = row['col1'] #string col1
    c2 = row['col2'] #string col2
    find_index = c1.find(c2) #first find c2 index from left
    if find_index == -1: # not find
        return c1 #not change
    else:
        start_index = max(find_index - 1, 0) #1 before but not negative
        end_index = find_index + len(c2) +1 #1 after, python will handle index overflow
        return c1.replace(c1[start_index:end_index], '') #remove

然后:

df['col1'] = df.apply(func, axis=1)

*为避免复制警告,请使用:

df = df.assign(col1=df.apply(func, axis=1))

答案 2 :(得分:0)

也许有一种更pythonic或更优雅的方式,但是这就是我上面快速完成的方式。如果您不需要灵活性来操纵字符串,并且修复速度比性能更重要,这将是最好的选择。

我取出了数据框的列作为两个单独的序列

col1Series = df['col1']
col2Series = df['col2']

接下来创建一个空列表来存储最终的字符串值:

rowxList = []

迭代如下以填充列表:

for x,y in zip(col1Series,col2Series):
    rowx  = x.replace(y,'')
    rowxList.append(rowx)

最后,将rowxList作为新列放回原始数据帧中。您可以替换旧列。比较安全的做法是在新列下执行此操作,然后对照原始两列检查输出,然后删除不再需要的旧列:

df['newCol'] = rowxList