为图像输入创建TFrecords:如下所示
char_ids_padded, char_ids_unpadded = encode_utf8_string(text)
print("char_ids_padded:"+str(char_ids_padded))
print("char_ids_unpadded:"+str(char_ids_unpadded))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/format': _bytes_feature(b'png'),
'image/encoded': _bytes_feature(image.tostring()),
'image/class': _int64_feature(char_ids_padded),
'image/unpadded_class': _int64_feature(char_ids_unpadded),
'height': _int64_feature(image.shape[0]),
'width': _int64_feature(image.shape[1]),
'orig_width': _int64_feature(image.shape[1]/num_of_views),
'image/text': _bytes_feature(text)
}))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
char_ids_padded,char_ids_unpadded的输出如下:
char_ids_padded:[47,13,16,13,16,16,16,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
char_ids_unpadded:[47,13,16,13,16,16,16,52]
注意:char_ids_padded是列表格式,类型为 int ,在使用tf.train.Features进行映射时,错误为 TypeError:[47,13,16,13,16, 16,16,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0]类型为" class' list'",但预期之一:(" class' int& #39;",)
答案 0 :(得分:1)
您已将列表传递给tf.train.Int64List
,因此您无需创建包含_int64_feature
参数的新列表。也就是说,您应该尝试更改
tf.train.Int64List(value=[value])
到
tf.train.Int64List(value=value)
在_int64_feature
函数中。
当我运行以下代码时,它可以工作:
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
char_ids_padded = [47, 13, 16, 13, 16, 16, 16, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/class': _int64_feature(char_ids_padded),
}))