我最近有一个要求,我需要生成Parquet文件,Apache Spark只能使用Java读取(不使用其他软件安装,如:Apache Drill,Hive,Spark等)。这些文件需要保存到S3,因此我将分享有关如何执行这两项操作的详细信息。
关于如何执行此操作没有简单的指南。我也不是Java程序员,因此使用Maven,Hadoop等的概念对我来说都是陌生的。所以我花了将近两周的时间来完成这项工作。我想在下面分享我的个人指南,了解我如何实现这个目标
答案 0 :(得分:7)
免责声明:以下代码示例绝不代表最佳做法,仅作为粗略的操作方法提供。
<强>依赖关系:强>
我将 NetBeans 用作我的IDE。
关于Java中的镶木地板的一些信息(对于像我这样的新手):
<强>预备知识:强>
您必须在将运行Java代码的Windows机器上安装hadoop。好消息是你不需要安装整个hadoop软件,而只需要两个文件:
可以下载这些here。在这个例子中你需要2.8.1版本(由于parquet-avro 1.9.0)。
添加名为 HADOOP_HOME 的新系统变量(非用户变量),其值为 C:\ hadoop-2.8.1
修改系统路径变量(非用户变量),并将以下内容添加到最后:%HADOOP_HOME%\ bin
如果此配置未正确完成,您将在运行时收到以下错误:java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
编码入门:
首先,您需要生成架构。现在据我所知,你无法在运行时以编程方式生成架构。 Schema.Parser 类&#39; parse()方法仅将文件或字符串文字作为参数,并且在创建模式后不允许您修改模式。 为了避免这种情况,我在运行时生成我的Schema JSON并解析它。下面是一个示例Schema:
String schema = "{\"namespace\": \"org.myorganization.mynamespace\"," //Not used in Parquet, can put anything
+ "\"type\": \"record\"," //Must be set as record
+ "\"name\": \"myrecordname\"," //Not used in Parquet, can put anything
+ "\"fields\": ["
+ " {\"name\": \"myInteger\", \"type\": \"int\"}," //Required field
+ " {\"name\": \"myString\", \"type\": [\"string\", \"null\"]},"
+ " {\"name\": \"myDecimal\", \"type\": [{\"type\": \"fixed\", \"size\":16, \"logicalType\": \"decimal\", \"name\": \"mydecimaltype1\", \"precision\": 32, \"scale\": 4}, \"null\"]},"
+ " {\"name\": \"myDate\", \"type\": [{\"type\": \"int\", \"logicalType\" : \"date\"}, \"null\"]}"
+ " ]}";
Parser parser = new Schema.Parser().setValidate(true);
Schema avroSchema = parser.parse(schema);
有关Avro架构的详细信息,请访问:https://avro.apache.org/docs/1.8.0/spec.html
接下来我们可以开始生成记录(Avro原始类型很简单):
GenericData.Record record = new GenericData.Record(avroSchema);
record.put("myInteger", 1);
record.put("myString", "string value 1");
fixed_len_byte_array
)。所以我们也必须在我们的案例中使用 fixed (可以在架构中看到)。在Java中,我们必须使用BigDecimal
才能真正处理小数。并且我已经确定Decimal(32,4)
无论值多少都不会超过16个字节。因此,我们将在下面的序列化中(以及上面的模式中)使用16的标准字节数组:BigDecimal myDecimalValue = new BigDecimal("99.9999");
//First we need to make sure the BigDecimal matches our schema scale:
myDecimalValue = myDecimalValue.setScale(4, RoundingMode.HALF_UP);
//Next we get the decimal value as one BigInteger (like there was no decimal point)
BigInteger myUnscaledDecimalValue = myDecimalValue.unscaledValue();
//Finally we serialize the integer
byte[] decimalBytes = myUnscaledDecimalValue.toByteArray();
//We need to create an Avro 'Fixed' type and pass the decimal schema once more here:
GenericData.Fixed fixed = new GenericData.Fixed(new Schema.Parser().parse("{\"type\": \"fixed\", \"size\":16, \"precision\": 32, \"scale\": 4, \"name\":\"mydecimaltype1\"}"));
byte[] myDecimalBuffer = new byte[16];
if (myDecimalBuffer.length >= decimalBytes.length) {
//Because we set our fixed byte array size as 16 bytes, we need to
//pad-left our original value's bytes with zeros
int myDecimalBufferIndex = myDecimalBuffer.length - 1;
for(int i = decimalBytes.length - 1; i >= 0; i--){
myDecimalBuffer[myDecimalBufferIndex] = decimalBytes[i];
myDecimalBufferIndex--;
}
//Save result
fixed.bytes(myDecimalBuffer);
} else {
throw new IllegalArgumentException(String.format("Decimal size: %d was greater than the allowed max: %d", decimalBytes.length, myDecimalBuffer.length));
}
//We can finally write our decimal to our record
record.put("myDecimal", fixed);
对于日期值,Avro指定我们需要将自EPOCH以来的天数保存为整数。 (如果您还需要时间组件,例如实际的DateTime类型,则需要使用时间戳 Avro类型,我将不会介绍它。 我发现获取epoch以来天数的最简单方法是使用joda-time库。如果您将 hadoop-aws 依赖项添加到项目中,那么您应该已经拥有此库。如果不是,您需要自己添加:
//Get epoch value
MutableDateTime epoch = new MutableDateTime(0l, DateTimeZone.UTC);
DateTime currentDate = new DateTime(); //Can take Java Date in constructor
Days days = Days.daysBetween(epoch, currentDate);
//We can write number of days since epoch into the record
record.put("myDate", days.getDays());
我们终于可以开始编写我们的镶木地板文件了
try {
Configuration conf = new Configuration();
conf.set("fs.s3a.access.key", "ACCESSKEY");
conf.set("fs.s3a.secret.key", "SECRETKEY");
//Below are some other helpful settings
//conf.set("fs.s3a.endpoint", "s3.amazonaws.com");
//conf.set("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider");
//conf.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName()); // Not needed unless you reference the hadoop-hdfs library.
//conf.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName()); // Uncomment if you get "No FileSystem for scheme: file" errors
Path path = new Path("s3a://your-bucket-name/examplefolder/data.parquet");
//Use path below to save to local file system instead
//Path path = new Path("data.parquet");
try (ParquetWriter writer = AvroParquetWriter.builder(path)
.withSchema(avroSchema)
.withCompressionCodec(CompressionCodecName.GZIP)
.withConf(conf)
.withPageSize(4 * 1024 * 1024) //For compression
.withRowGroupSize(16 * 1024 * 1024) //For write buffering (Page size)
.build()) {
//We only have one record to write in our example
writer.write(record);
}
} catch (Exception ex) { ex.printStackTrace(System.out); }
为了您的方便,整个源代码:
package com.mycompany.stackoverflow;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.parquet.avro.AvroParquetWriter;
import org.apache.parquet.hadoop.ParquetWriter;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import org.joda.time.DateTime;
import org.joda.time.DateTimeZone;
import org.joda.time.Days;
import org.joda.time.MutableDateTime;
public class Main {
public static void main(String[] args) {
System.out.println("Start");
String schema = "{\"namespace\": \"org.myorganization.mynamespace\"," //Not used in Parquet, can put anything
+ "\"type\": \"record\"," //Must be set as record
+ "\"name\": \"myrecordname\"," //Not used in Parquet, can put anything
+ "\"fields\": ["
+ " {\"name\": \"myInteger\", \"type\": \"int\"}," //Required field
+ " {\"name\": \"myString\", \"type\": [\"string\", \"null\"]},"
+ " {\"name\": \"myDecimal\", \"type\": [{\"type\": \"fixed\", \"size\":16, \"logicalType\": \"decimal\", \"name\": \"mydecimaltype1\", \"precision\": 32, \"scale\": 4}, \"null\"]},"
+ " {\"name\": \"myDate\", \"type\": [{\"type\": \"int\", \"logicalType\" : \"date\"}, \"null\"]}"
+ " ]}";
Schema.Parser parser = new Schema.Parser().setValidate(true);
Schema avroSchema = parser.parse(schema);
GenericData.Record record = new GenericData.Record(avroSchema);
record.put("myInteger", 1);
record.put("myString", "string value 1");
BigDecimal myDecimalValue = new BigDecimal("99.9999");
//First we need to make sure the huge decimal matches our schema scale:
myDecimalValue = myDecimalValue.setScale(4, RoundingMode.HALF_UP);
//Next we get the decimal value as one BigInteger (like there was no decimal point)
BigInteger myUnscaledDecimalValue = myDecimalValue.unscaledValue();
//Finally we serialize the integer
byte[] decimalBytes = myUnscaledDecimalValue.toByteArray();
//We need to create an Avro 'Fixed' type and pass the decimal schema once more here:
GenericData.Fixed fixed = new GenericData.Fixed(new Schema.Parser().parse("{\"type\": \"fixed\", \"size\":16, \"precision\": 32, \"scale\": 4, \"name\":\"mydecimaltype1\"}"));
byte[] myDecimalBuffer = new byte[16];
if (myDecimalBuffer.length >= decimalBytes.length) {
//Because we set our fixed byte array size as 16 bytes, we need to
//pad-left our original value's bytes with zeros
int myDecimalBufferIndex = myDecimalBuffer.length - 1;
for(int i = decimalBytes.length - 1; i >= 0; i--){
myDecimalBuffer[myDecimalBufferIndex] = decimalBytes[i];
myDecimalBufferIndex--;
}
//Save result
fixed.bytes(myDecimalBuffer);
} else {
throw new IllegalArgumentException(String.format("Decimal size: %d was greater than the allowed max: %d", decimalBytes.length, myDecimalBuffer.length));
}
//We can finally write our decimal to our record
record.put("myDecimal", fixed);
//Get epoch value
MutableDateTime epoch = new MutableDateTime(0l, DateTimeZone.UTC);
DateTime currentDate = new DateTime(); //Can take Java Date in constructor
Days days = Days.daysBetween(epoch, currentDate);
//We can write number of days since epoch into the record
record.put("myDate", days.getDays());
try {
Configuration conf = new Configuration();
conf.set("fs.s3a.access.key", "ACCESSKEY");
conf.set("fs.s3a.secret.key", "SECRETKEY");
//Below are some other helpful settings
//conf.set("fs.s3a.endpoint", "s3.amazonaws.com");
//conf.set("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider");
//conf.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName()); // Not needed unless you reference the hadoop-hdfs library.
//conf.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName()); // Uncomment if you get "No FileSystem for scheme: file" errors.
Path path = new Path("s3a://your-bucket-name/examplefolder/data.parquet");
//Use path below to save to local file system instead
//Path path = new Path("data.parquet");
try (ParquetWriter<GenericData.Record> writer = AvroParquetWriter.<GenericData.Record>builder(path)
.withSchema(avroSchema)
.withCompressionCodec(CompressionCodecName.GZIP)
.withConf(conf)
.withPageSize(4 * 1024 * 1024) //For compression
.withRowGroupSize(16 * 1024 * 1024) //For write buffering (Page size)
.build()) {
//We only have one record to write in our example
writer.write(record);
}
} catch (Exception ex) {
ex.printStackTrace(System.out);
}
}
}