我有一个包含距离的数据表。我希望通过我的“id”变量和包含距离阈值(e.g. Dist<1, Dist<2, etc.).
在data.table中运行各种操作。我知道如何通过id和距离"by=list(id,Dist)"
运行操作,但我真的想要一个by变量更像是"by=list(id,c(Dist<=1,Dist<=2,Dist<=3,Dist<=4,Dist<=5)
。以下是我的数据结构和目标的示例。
#load library
library(data.table)
#create data
set.seed(123L)
dt<-data.table(id=factor(rep(1:10,5)),V1=rnorm(50,5,5),Dist=sample(1:5,50,replace=T))
#calculate mean of V1 by id and distance (wrong results)
dt2<-dt[,.(MeanV1=mean(V1)),by=list(id,Dist)]
#calculate mean of V1 by id and conditional distance (right results, wrong method)
dt2.1<-dt[Dist<=1,.(MeanV1=mean(V1)),by=id]
dt2.2<-dt[Dist<=2,.(MeanV1=mean(V1)),by=id]
dt2.3<-dt[Dist<=3,.(MeanV1=mean(V1)),by=id]
dt2.4<-dt[Dist<=4,.(MeanV1=mean(V1)),by=id]
dt2.5<-dt[Dist<=5,.(MeanV1=mean(V1)),by=id]
dt2<-rbind(dt2.1,dt2.2,dt2.3,dt2.4,dt2.5)
#ideal methods if either were valid
#syntax 1
dt2<-dt[,.(MeanV1=mean(V1)),by=list(id,c(Dist<=1,Dist<=2,Dist<=3,Dist<=4,Dist<=5))]
#syntax 2
rowindices<-list(dt$Dist<=1,dt$Dist<=2,dt$Dist<=3,dt$Dist<=4,dt$Dist<=5)
dt2<-dt[,.(MeanV1=mean(V1)),by=list(id,rowindices)]
提前致谢。
答案 0 :(得分:3)
弗兰克在评论中的回答将实现你所追求的目标。这是一个解释:
首先,你可以用data.table做的一件事是“非equi join”,这是第一个data.table调用正在做的事情。
首先,我们创建一个我们想要操作的阈值表:
> thresholds <- data.table(dist_threshold=1:5)
> thresholds
dist_threshold
1: 1
2: 2
3: 3
4: 4
5: 5
接下来,我们使用阈值表在原始表上执行非equi连接:这将创建一个新表,其中dist列包含低于该阈值的每个ID的所有条目:
> passes_threshold <- dt[thresholds, on=.(Dist < dist_threshold), # non-equi join
+ allow.cartesian=TRUE, # Fixes error, see details in ?data.table
+ nomatch=0 # Do not include thresholds which no row satisfies (i.e. Dist < 1)
+ ]
> passes_threshold
# Here the Dist column now means "Dist < dist_threshold".
# There will be 5 rows where Dist < 2, 19 where Dist < 3,
# 30 where Dist < 4, and 40 Where Dist < 5
id V1 Dist
1: 8 8.521825 2
2: 5 2.002523 2
3: 6 8.698732 2
4: 9 -1.701028 2
5: 2 6.114119 2
---
90: 6 -1.392776 5
91: 10 9.033493 5
92: 1 9.565713 5
93: 5 4.579124 5
94: 7 1.498690 5
我们现在可以将联接与j
和by
参数中的汇总操作结合起来,计算每个阈值的平均距离:
> passes_threshold[,.(mean_Dist_by_threshold=mean(V1)), by=.(threshold=Dist)]
threshold mean_Dist_per_threshold
1: 2 4.727234
2: 3 4.615258
3: 4 4.202856
4: 5 4.559240
答案 1 :(得分:3)
作为Scott's answer的补充,他的解决方案可以更简洁地编写为
dt[.(1:5), on = .(Dist < V1), allow = TRUE, nomatch = 0][
, .(mean_Dist_by_threshold = mean(V1)), by = .(threshold = Dist)]
此处,.(1:5)
动态创建thresholds
,data.table
表达式被链接。
或者,可以使用by = .EACHI
在加入期间完成聚合:
dt[.(1:5), on = .(Dist < V1), nomatch = 0,
.(mean_Dist_by_threshold = mean(V1)), by = .EACHI][
, setnames(.SD, "Dist", "threshold")]
对setnames()
的调用只是为了方便返回与Scott的答案相同的结果。
library(data.table)
# create data
nr <- 5e2L
set.seed(123L) # to make the data reproducible
dt <-
data.table(
id = factor(rep(1:10, nr / 10)),
V1 = rnorm(nr, 5, 5),
Dist = sample(1:5, nr, replace = T)
)
str(dt)
microbenchmark::microbenchmark(
scott = {
thresholds <- data.table(dist_threshold=1:5)
passes_threshold <-
dt[thresholds, on = .(Dist < dist_threshold), # non-equi join
allow.cartesian = TRUE, # Fixes error, see details in ?data.table
nomatch = 0 # Do not include thresholds which no row satisfies (i.e. Dist < 1)
]
passes_threshold[, .(mean_Dist_by_threshold = mean(V1)), by = .(threshold = Dist)]
},
uwe1 = {
dt[.(1:5), on = .(Dist < V1), allow = TRUE, nomatch = 0][
, .(mean_Dist_by_threshold = mean(V1)), by = .(threshold = Dist)]
},
uwe2 = {
dt[.(1:5), on = .(Dist < V1), nomatch = 0,
.(mean_Dist_by_threshold = mean(V1)), by = .EACHI][
, setnames(.SD, "Dist", "threshold")]
},
times = 100L
)
有500行,3种变体之间只有轻微差异,链接略高于斯科特和by = .EACHI
。
Unit: milliseconds expr min lq mean median uq max neval cld scott 1.460058 1.506854 1.618048 1.526019 1.726257 4.768493 100 a uwe1 1.302760 1.327686 1.487237 1.338926 1.372498 12.733933 100 a uwe2 1.827756 1.864777 1.944920 1.888349 2.020097 2.233269 100 b
有50000行,链接仍然略高于斯科特,但by = .EACHI
的表现优于其他链接。
Unit: milliseconds expr min lq mean median uq max neval cld scott 3.692545 3.811466 4.016152 3.826423 3.853489 10.336598 100 b uwe1 3.560786 3.632999 3.936583 3.642526 3.657992 13.579008 100 b uwe2 2.503508 2.545722 2.577735 2.566869 2.602586 2.798692 100 a
有5 M行,这变得更加明显:
Unit: milliseconds
expr min lq mean median uq max neval cld
scott 641.9945 675.3749 743.0761 708.7552 793.6170 878.4787 3 b
uwe1 587.1724 587.5557 589.1360 587.9391 590.1178 592.2965 3 b
uwe2 130.9358 134.6688 157.1860 138.4019 170.3110 202.2202 3 a
速度差异的一个解释可能是超过10 M行的中间结果passes_threshold
的剪切大小(这就是为什么需要allow.cartesian = TRUE
)。