我正在尝试分析以下查询性能。在集合中使用50k条目执行查询需要23秒才能响应。
db.getCollection('collection').find({ipAddress: "127.0.0.1"}).sort({"_id": -1})
在此查询中,ipAddress已编制索引,默认情况下会对id进行索引。我用explain命令检查了,响应是
"totalKeysExamined" : 49827,
"totalDocsExamined" : 49827,
但是当我删除排序并且响应是
时"totalKeysExamined" : 23877,
"totalDocsExamined" : 23877,
我想知道Mongodb用id检查所有记录吗?
编辑:
添加解释查询的整个响应
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "collection",
"indexFilterSet" : false,
"parsedQuery" : {
"ipAddress" : {
"$eq" : "127.0.0.1"
}
},
"winningPlan" : {
"stage" : "FETCH",
"filter" : {
"ipAddress" : {
"$eq" : "127.0.0.1"
}
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"_id" : 1
},
"indexName" : "_id_",
"isMultiKey" : false,
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "backward",
"indexBounds" : {
"_id" : [
"[MaxKey, MinKey]"
]
}
}
},
"rejectedPlans" : [
{
"stage" : "SORT",
"sortPattern" : {
"_id" : -1.0
},
"inputStage" : {
"stage" : "SORT_KEY_GENERATOR",
"inputStage" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"ipAddress" : 1.0
},
"indexName" : "ipAddress_1",
"isMultiKey" : false,
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {
"ipAddress" : [
"[\"127.0.0.1\", \"127.0.0.1\"]"
]
}
}
}
}
}
]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 33809,
"executionTimeMillis" : 25572,
"totalKeysExamined" : 105260,
"totalDocsExamined" : 105260,
"executionStages" : {
"stage" : "FETCH",
"filter" : {
"ipAddress" : {
"$eq" : "127.0.0.1"
}
},
"nReturned" : 33809,
"executionTimeMillisEstimate" : 24894,
"works" : 105261,
"advanced" : 33809,
"needTime" : 71451,
"needYield" : 0,
"saveState" : 1376,
"restoreState" : 1376,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 105260,
"alreadyHasObj" : 0,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 105260,
"executionTimeMillisEstimate" : 2020,
"works" : 105261,
"advanced" : 105260,
"needTime" : 0,
"needYield" : 0,
"saveState" : 1376,
"restoreState" : 1376,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {
"_id" : 1
},
"indexName" : "_id_",
"isMultiKey" : false,
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "backward",
"indexBounds" : {
"_id" : [
"[MaxKey, MinKey]"
]
},
"keysExamined" : 105260,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0
}
}
},
"serverInfo" : {
"host" : "client",
"port" : 27017,
"version" : "3.2.16",
"gitVersion" : "1"
},
"ok" : 1.0
}
答案 0 :(得分:1)
您收藏的1/3与过滤器{ipAddress: "127.0.0.1"}
匹配。
以正确的顺序获取所有100k文档的速度更快
"stage" : "IXSCAN", "keyPattern" : {"_id" : 1}
然后过滤掉那些不匹配的内容:
"stage" : "FETCH", "filter" : {"ipAddress" : {"$eq" : "127.0.0.1"}}
而不是通过过滤器
获取 "stage" : "IXSCAN", "keyPattern" : {"ipAddress" : 1.0}
然后在内存中对40k文件进行排序
"stage" : "SORT","sortPattern" : {"_id" : -1.0}
删除排序时,可以更快地使用{"ipAddress" : 1.0}
索引来仅提取匹配的文档。
您可能会发现索引{ipAddress: 1, _id: 1}
更有效率,特别是如果您将它与相同的投影选项结合使用。
作为旁注,它看起来并不健康。我可以想象FETCH阶段如此缓慢,因为从磁盘加载了大量文档,交换回来等等。但我认为IXSCAN阶段没有正当理由
"stage" : "IXSCAN",
"nReturned" : 105260,
"executionTimeMillisEstimate" : 2020,
超过2秒。 100k _ids的IXSCAN应该快10倍。