我有一个dataframe
,有18行和25个变量。值介于0和1之间。对于每一行,我想计算一个高值(> 0.7)后面跟一个低值(<0.4)并将该计数存储在一个新列中的次数。 / p>
到目前为止,我一直在使用:
df$n_calls<-rowSums(df > 0.7)
我知道可以使用不同的条件,但在我的情况下,检查低值是否在高值之后非常重要
以下是我的df
1 2 3 4 5 6 7 8 9 10 11
1 0.186158072 0.27738592 0.42165043 0.43501515 0.10918095 0.09976244 0.09571536 0.08674526 0.09239877 0.07523392 0.043679510
2 0.773469188 0.75381254 0.20389633 0.46444408 0.30433377 0.68334244 0.42105103 0.66224478 0.32412056 0.30951402 0.616658953
3 0.201245200 0.26873094 0.25892904 0.38605874 0.68438397 0.30236790 0.51493090 0.66314468 0.68910974 0.59134860 0.625550641
4 0.033746517 0.06388212 0.06978669 0.05517553 0.06032239 0.06736223 0.06514233 0.05133860 0.06034266 0.05702451 0.011144861
5 0.590297759 0.40352955 0.08106493 0.06063485 0.07780428 0.09633069 0.10882515 0.11468680 0.28375374 0.63941033 0.629284574
6 0.165001648 0.31174739 0.36955514 0.47581249 0.65349233 0.66471913 0.58004314 0.50790858 0.51298260 0.18651107 0.501195655
7 0.033164989 0.05678890 0.05941058 0.04139692 0.04660761 0.05452679 0.04939543 0.02780824 0.03680599 0.04645522 0.018496662
8 0.080893779 0.07228276 0.07473865 0.05536056 0.05732153 0.06403365 0.06139970 0.05142047 0.05698089 0.06998986 0.032598440
9 0.557273680 0.49226191 0.63900601 0.37497255 0.72114277 0.37557355 0.34360391 0.37502000 0.41622472 0.46852220 0.410656260
10 -0.004010143 0.03051558 0.04403711 0.02749514 0.04770637 0.05800898 0.05603494 0.04163723 0.04622024 0.04677767 0.007736933
11 0.280273472 0.59839662 0.74167893 0.75352655 0.75108785 0.72345468 0.65395063 0.32957749 0.08357061 0.33165070 0.731228429
12 0.107398713 0.10983041 0.13630594 0.19905651 0.47014034 0.72519345 0.69545405 0.62194265 0.49873996 0.16549282 0.087689371
13 0.164520925 0.22763832 0.50824238 0.59686660 0.68419908 0.66837348 0.62380175 0.20226234 0.11425066 0.09725765 0.078701134
14 0.076934267 0.09684586 0.10703672 0.08436558 0.10789735 0.24130640 0.36615645 0.42805115 0.42937392 0.51390288 0.584757257
15 0.055565174 0.06796064 0.07519020 0.05498454 0.05754891 0.06377643 0.06537049 0.05152625 0.05783594 0.05963775 0.022556411
16 0.126975964 0.19394191 0.53324900 0.60905758 0.67072084 0.61613836 0.55415573 0.18317823 0.13453799 0.09835233 0.067080267
17 0.730333357 0.65759923 0.59045925 0.63148539 0.36305458 0.40829673 0.48734552 0.58647457 0.66968986 0.48312152 0.453863785
18 0.196450179 0.33968393 0.51538678 0.44868341 0.22221050 0.18934329 0.19179838 0.18764290 0.22423578 0.27524872 0.608625015
12 13 14 15 16 17 18 19 20 21 22
1 0.038553121 0.040081485 0.05358118 0.07403555 0.05091901 0.042299806 0.04322122 0.05587749 0.06881493 0.09753878 0.10462942
2 0.618447812 0.048885425 0.06231155 0.08228801 0.05963307 0.022666894 0.09384802 0.07914030 0.08549148 0.08373159 0.07404309
3 0.179434300 0.679981042 0.69176338 0.74453573 0.70937271 0.289762839 0.17956945 0.68770664 0.73864122 0.73187173 0.34604987
4 0.005094105 0.007952117 0.02076629 0.04174891 0.02129751 0.010066515 0.01454399 0.04337116 0.05259742 0.05795045 0.04533231
5 0.554122074 0.322792638 0.21839661 0.18322419 0.05764354 0.041600287 0.04692187 0.04305403 0.05762126 0.06212474 0.05289008
6 0.719147265 0.481543275 0.20168371 0.19885731 0.27223662 0.587549079 0.66694312 0.76974309 0.45266122 0.23338301 0.09435850
7 0.019041585 0.005380972 0.01856521 0.03947278 0.01221314 0.004858193 0.01322566 0.02001854 0.02755861 0.03889634 0.03102918
8 0.031368415 0.024535386 0.04031225 0.06011198 0.03558484 0.027890723 0.04100022 0.04572906 0.05465957 0.06437218 0.06308497
9 0.290487995 0.109253389 0.09076971 0.11177720 0.08365271 0.074780381 0.07845467 0.08843678 0.12696256 0.15252180 0.16108674
10 0.004599971 0.004843833 0.02327683 0.05022203 0.02867540 0.013674600 0.02376855 0.03408261 0.04563785 0.04991278 0.04216682
11 0.702763718 0.204497547 0.05554607 0.07056242 0.04561622 0.027652748 0.05185238 0.03544719 0.04735368 0.05194280 0.05193089
12 0.087884047 0.068055513 0.07587232 0.09912338 0.09637278 0.085378227 0.09348430 0.09237792 0.10785289 0.22242136 0.28522539
13 0.050134608 0.060945434 0.07203437 0.09687331 0.07316602 0.067771770 0.07634787 0.08154630 0.09157153 0.08930093 0.09904561
14 0.255098748 0.323642069 0.34568802 0.42105224 0.41797424 0.434900416 0.39764147 0.30798058 0.31269146 0.42912436 0.52562571
15 0.015262751 0.027712972 0.03813722 0.07103989 0.05202094 0.040513502 0.04066496 0.23360454 0.34666910 0.62701471 0.61683636
16 0.052436966 0.080045644 0.11447572 0.10672800 0.07924541 0.064626998 0.07234429 0.06744468 0.07878329 0.08901864 0.07953835
17 0.422132751 0.127518376 0.13062324 0.15104667 0.12490013 0.110841862 0.10892834 0.07984952 0.09097741 0.15193027 0.18654107
18 0.662904286 0.247251060 0.20583902 0.32290931 0.47391488 0.574805088 0.64776018 0.73091902 0.27798841 0.35922799 0.36333131
23 24 n_calls
1 0.23100480 0.30027592 0
2 0.07209460 0.06670631 1
3 0.30800154 0.27452357 2
4 0.04148986 0.03842700 0
5 0.05362370 0.05018294 0
6 0.08703911 0.08242964 0
7 0.03186000 0.03233006 0
8 0.05789078 0.05637648 0
9 0.25593446 0.29909342 1
10 0.03615961 0.03356159 0
11 0.05754763 0.06368048 1
12 0.45794999 0.56138753 0
13 0.16676533 0.22718405 0
14 0.63646856 0.29169414 0
15 0.64039251 0.60901138 0
16 0.08805636 0.09688941 0
17 0.36883747 0.41561690 1
18 0.37085132 0.36292634
知道如何继续吗?
答案 0 :(得分:2)
我们可以使用rowSums
基于对数据集进行子集化,方法是删除最后一列,第一列,以便维度相同并比较相邻列
rowSums(df[-length(df)] > 0.7 & df[-1] < 0.4)