我有基本的DataFrame:
df = pd.DataFrame([[1, 2],[3, 4],[5, 6],[7, 8]],
index=['A','B','C','D'], columns=['X','Y'])
我希望map函数能够用于X和X列。 Y并获得此:
X Y Chk
A 1 2 found A
B 3 4 found B
C 5 6 found C
D 7 8 found D
为此,我为2个键创建了一个dict:
mapped = {1:{2:'found A'}, 3:{4:'found B'},5:{6:'found C'}, 7:{8:'found D'}}
在DataFrame上使用了applymap方法:
df['Chk'] = df[['X','Y']].applymap(mapped)
不幸的是,我收到了一条错误消息:
TypeError: ("'dict' object is not callable", 'occurred at index X')
代码是错误的,还是基于dict的映射只是不支持超过1列?
答案 0 :(得分:1)
首先Data.ByteString.Char8 first sentence HttpClient httpClient = new DefaultHttpClient();
try {
HttpPost request = new HttpPost("http://xxx.xxx.com/fashionnewssignup");
StringEntity params =new StringEntity("{\"fashionSignups\":[{\"corporateBrandId\":0,\"vendorId\":null,\"countryCode\":\"pt\",\"languageCode\":\"pt\",\"email\":\"test@ytDessddefwwt.com\",\"genderCode\":0,\"hasChildren\":0,\"zipcode\":\"12345\"}]}");
request.addHeader("content-type", "application/json");
request.setEntity(params);
HttpResponse response = httpClient.execute(request);
String s = response.getStatusLine()+" " + response.toString();
System.out.println(s);
}catch (Exception ex) {
// handle exception here
} finally {
httpClient.getConnectionManager().shutdown();
}
再DataFrame
再创建Series
,然后stack
再创建MultiIndex
:
s = pd.DataFrame(mapped).stack().rename('Chk')
print (s)
2 1 found A
4 3 found B
6 5 found C
8 7 found D
Name: Chk, dtype: object
df = df.join(s, on=['Y','X'])
print (df)
X Y Chk
A 1 2 found A
B 3 4 found B
C 5 6 found C
D 7 8 found D
如果可能,请创建DataFrame
进行制图,然后使用join
:
mapped = {'X': [1, 3, 5, 7],
'Chk': ['found A', 'found B', 'found C', 'found D'],
'Y': [2, 4, 6, 8]}
df1 = pd.DataFrame(mapped)
print (df1)
Chk X Y
0 found A 1 2
1 found B 3 4
2 found C 5 6
3 found D 7 8
df = pd.merge(df, df1, how='left', on=['X','Y'])
print (df)
X Y Chk
0 1 2 found A
1 3 4 found B
2 5 6 found C
3 7 8 found D