我希望使用fit_generator作为keras
中的输入来网格搜索模型的参数我在堆栈溢出中找到下面的代码并更改它
1-但我不明白如何给fit_generator或flow_from_directory拟合函数(代码中的最后一行)
2-如何添加早期停止?
感谢
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.wrappers.scikit_learn import KerasClassifier
from keras import backend as K
from sklearn.grid_search import GridSearchCV
from tqdm import tqdm # a nice pretty percentage bar for tasks. Thanks to viewer Daniel Bühler for this suggestion
import os # dealing with directories
import numpy as np # dealing with arrays
from random import shuffle # mixing up or currently ordered data that might lead our network astray in training.
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
def make_model(dense_layer_sizes, filters, kernel_size, pool_size):
'''Creates model comprised of 2 convolutional layers followed by dense layers
dense_layer_sizes: List of layer sizes.
This list has one number for each layer
filters: Number of convolutional filters in each convolutional layer
kernel_size: Convolutional kernel size
pool_size: Size of pooling area for max pooling
'''
model = Sequential()
model.add(Conv2D(filters, kernel_size,
padding='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(filters, kernel_size))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
for layer_size in dense_layer_sizes:
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
return model
class KerasClassifier(KerasClassifier):
""" adds sparse matrix handling using batch generator
"""
def fit(self, x, y, **kwargs):
""" adds sparse matrix handling """
if not issparse(x):
return super().fit(x, y, **kwargs)
############ adapted from KerasClassifier.fit ######################
if self.build_fn is None:
self.model = self.__call__(**self.filter_sk_params(self.__call__))
elif not isinstance(self.build_fn, types.FunctionType):
self.model = self.build_fn(
**self.filter_sk_params(self.build_fn.__call__))
else:
self.model = self.build_fn(**self.filter_sk_params(self.build_fn))
loss_name = self.model.loss
if hasattr(loss_name, '__name__'):
loss_name = loss_name.__name__
if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
y = to_categorical(y)
### fit => fit_generator
fit_args = copy.deepcopy(self.filter_sk_params(Sequential.fit_generator))
fit_args.update(kwargs)
############################################################
self.model.fit_generator(
self.get_batch(x, y, self.sk_params["batch_size"]),
samples_per_epoch=x.shape[0],
**fit_args)
return self
def get_batch(self, x, y=None, batch_size=32):
""" batch generator to enable sparse input """
index = np.arange(x.shape[0])
start = 0
while True:
if start == 0 and y is not None:
np.random.shuffle(index)
batch = index[start:start+batch_size]
if y is not None:
yield x[batch].toarray(), y[batch]
else:
yield x[batch].toarray()
start += batch_size
if start >= x.shape[0]:
start = 0
def predict_proba(self, x):
""" adds sparse matrix handling """
if not issparse(x):
return super().predict_proba(x)
preds = self.model.predict_generator(
self.get_batch(x, None, self.sk_params["batch_size"]),
val_samples=x.shape[0])
return preds
dense_size_candidates = [[32], [64], [32, 32], [64, 64]]
my_classifier = KerasClassifier(make_model, batch_size=32)
validator = GridSearchCV(my_classifier,
param_grid={'dense_layer_sizes': dense_size_candidates,
# epochs is avail for tuning even when not
# an argument to model building function
'epochs': [3, 6],
'filters': [8],
'kernel_size': [3],
'pool_size': [2]},
scoring='neg_log_loss',
n_jobs=1)
batch_size = 20
validation_datagen = ImageDataGenerator(rescale=1./255)
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'd:/train', # this is the target directory
target_size=(width, height), # all images will be resized to 150x150
batch_size=batch_size,
color_mode= "grayscale",
class_mode='binary',
shuffle=True
# ,save_to_dir='preview', save_prefix='cat', save_format='png'
) # since we use binary_crossentropy loss, we need binary labels
# this is a similar generator, for validation data
validation_generator = validation_datagen.flow_from_directory(
'd:/validation',
target_size=(width, height),
batch_size=batch_size,
color_mode= "grayscale",
class_mode='binary')
test_generator = test_datagen.flow_from_directory(
'd:/test',
target_size=(width, height),
batch_size=batch_size,
color_mode= "grayscale",
class_mode='binary')
validator.fit(??????
答案 0 :(得分:2)
我正在使用此实现,我希望它可以帮助您。
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger
from keras.wrappers.scikit_learn import KerasClassifier
import types
class KerasBatchClassifier(KerasClassifier):
def fit(self, X, y, **kwargs):
# taken from keras.wrappers.scikit_learn.KerasClassifier.fit ###################################################
if self.build_fn is None:
self.model = self.__call__(**self.filter_sk_params(self.__call__))
elif not isinstance(self.build_fn, types.FunctionType) and not isinstance(self.build_fn, types.MethodType):
self.model = self.build_fn(**self.filter_sk_params(self.build_fn.__call__))
else:
self.model = self.build_fn(**self.filter_sk_params(self.build_fn))
loss_name = self.model.loss
if hasattr(loss_name, '__name__'):
loss_name = loss_name.__name__
if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
y = to_categorical(y)
################################################################################################################
datagen = ImageDataGenerator(
rotation_range=45,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest'
)
if 'X_val' in kwargs and 'y_val' in kwargs:
X_val = kwargs['X_val']
y_val = kwargs['y_val']
val_gen = ImageDataGenerator(
horizontal_flip=True
)
val_flow = val_gen.flow(X_val, y_val, batch_size=32)
val_steps = len(X_val) / 32
early_stopping = EarlyStopping( patience=5, verbose=5, mode="auto")
model_checkpoint = ModelCheckpoint("results/best_weights.{epoch:02d}-{loss:.5f}.hdf5", verbose=5, save_best_only=True, mode="auto")
else:
val_flow = None
val_steps = None
early_stopping = EarlyStopping(monitor="acc", patience=3, verbose=5, mode="auto")
model_checkpoint = ModelCheckpoint("results/best_weights.{epoch:02d}-{loss:.5f}.hdf5", monitor="acc", verbose=5, save_best_only=True, mode="auto")
callbacks = [early_stopping, model_checkpoint]
epochs = self.sk_params['epochs'] if 'epochs' in self.sk_params else 100
self.__history = self.model.fit_generator(
datagen.flow(X, y, batch_size=32),
steps_per_epoch=len(X) / 32,
validation_data=val_flow,
validation_steps=val_steps,
epochs=epochs,
callbacks=callbacks
)
return self.__history
def score(self, X, y, **kwargs):
kwargs = self.filter_sk_params(Sequential.evaluate, kwargs)
loss_name = self.model.loss
if hasattr(loss_name, '__name__'):
loss_name = loss_name.__name__
if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
y = to_categorical(y)
outputs = self.model.evaluate(X, y, **kwargs)
if type(outputs) is not list:
outputs = [outputs]
for name, output in zip(self.model.metrics_names, outputs):
if name == 'acc':
return output
raise Exception('The model is not configured to compute accuracy. '
'You should pass `metrics=["accuracy"]` to '
'the `model.compile()` method.')
@property
def history(self):
return self.__history
正如您所看到的,它是图片特有的,但您可以根据自己的具体需求进行调整。
我这样使用它:
from sklearn.model_selection import GridSearchCV
model = KerasBatchClassifier(build_fn=create_model, epochs=epochs)
learn_rate = [0.001, 0.01, 0.1]
epsilon = [None, 1e-2, 1e-3]
dropout_rate = [0.25, 0.5]
param_grid = dict(learn_rate=learn_rate, epsilon=epsilon, dropout_rate=dropout_rate)
grid = GridSearchCV(estimator=model, param_grid=param_grid)
grid_result = grid.fit(X_train, Y_train, X_val = X_test, y_val = Y_test)
答案 1 :(得分:1)
有一个名为ParameterGrid的类,该类在GridSearchCV()中对网格搜索给出的参数进行所有组合。您可以将它们存储在列表中。例如:
from sklearn.model_selection import ParameterGrid
parameters = {'epochs': [32, 64, 128],
'batch_size':[24, 32, 48, 64],
}
list(ParameterGrid(parameters))
打印出
[{'batch_size': 24, 'epochs': 32},
{'batch_size': 24, 'epochs': 64},
{'batch_size': 24, 'epochs': 128},
{'batch_size': 32, 'epochs': 32},
{'batch_size': 32, 'epochs': 64},
{'batch_size': 32, 'epochs': 128},
{'batch_size': 48, 'epochs': 32},
{'batch_size': 48, 'epochs': 64},
{'batch_size': 48, 'epochs': 128},
{'batch_size': 64, 'epochs': 32},
{'batch_size': 64, 'epochs': 64},
{'batch_size': 64, 'epochs': 128}]
在此列表的循环中,您可以使用这些特定的组合来训练模型。在每个循环结束时,您都可以使用其他函数检查val_acc和val_loss。
答案 2 :(得分:-1)
def create_model(learn_rate=0.01, momentum=0):
image_size = 224
input_shape = (image_size, image_size, 3)
pre_trained_model = VGG16(input_shape=input_shape, include_top=False, weights="imagenet")
last_layer = pre_trained_model.get_layer('block5_pool')
last_output = last_layer.output
# Flatten the output layer to 1 dimension
x = GlobalMaxPooling2D()(last_output)
# Add a fully connected layer with 512 hidden units and ReLU activation
x = Dense(512, activation='relu')(x)
# Add a dropout rate of 0.5
x = Dropout(0.5)(x)
# Add a final sigmoid layer for classification
x = layers.Dense(1, activation='sigmoid')(x)
model = Model(pre_trained_model.input, x)
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=learn_rate, momentum=momentum),
metrics=['accuracy'])
return model
learn_rate = [1e-9, 1e-3]
momentum = [0.6, 0.9]
def try_fit(learn_rate,momentum):
history_page=[]
for lr in learn_rate:
for moment in momentum:
model = create_model(lr,moment)
history = model.fit_generator(
train_generator,
epochs=epochs,
validation_data=validation_generator,
validation_steps=total_validate//batch_size,
steps_per_epoch=total_train//batch_size)
history_page.append(history)
return history_page
history_page = try_fit(learn_rate,momentum)
history_page[0].history['accuracy']
我觉得你可以试试这个方法