我认为它应该与with tf.device("/gpu:0")
一起使用,但我应该把它放在哪里?我不这么认为:
with tf.device("/gpu:0"):
tf.app.run()
那么我应该将它放在main()
的{{1}}函数中,还是我用于估算器的模型函数中?
编辑:如果这有帮助,这是我的tf.app
功能:
main()
正如你所看到的,我在这里的任何地方都没有明确的会话声明,所以我在哪里放置def main(unused_argv):
"""Code to load training folds data pickle or generate one if not present"""
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn2, model_dir="F:/python_machine_learning_codes/tmp/custom_age_adience_1")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=64,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=500,
hooks=[logging_hook])
# Evaluate the model and print results
"""Code to load eval fold data pickle or generate one if not present"""
eval_logs = {"probabilities": "softmax_tensor"}
eval_hook = tf.train.LoggingTensorHook(
tensors=eval_logs, every_n_iter=100)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn, hooks=[eval_hook])
?
答案 0 :(得分:0)
使用估算器,没有任何声明,如
sess = tf.Session(config = xxxxxxxxxxxxx)
既不是
的陈述sess.run()
所以......遗憾的是,张量流网络中没有完整的文档。 我正在尝试使用RunConfig的不同选项
# Create a tf.estimator.RunConfig to ensure the model is run on CPU, which
# trains faster than GPU for this model.
run_config = tf.estimator.RunConfig().replace(
session_config=tf.ConfigProto(log_device_placement=True,
device_count={'GPU': 0}))
尝试使用它...实际上我正在处理类似你的任务,所以如果我得到一些进展,我会在这里发布。
看看这里: https://github.com/tensorflow/models/blob/master/official/wide_deep/wide_deep.py 在这个例子中,他们使用上面显示的代码和.replace语句来确保模型在CPU上运行。
答案 1 :(得分:0)
您可以将它放在模型函数的开头,即,当您定义模型时,您应该写:
model = Model(rn50.input,
Dense(len(possible_labels), activation='softmax')
(rn50.get_layer(layer_name).output))
但是,我希望tensorflow能够自动为你的模型使用gpu。您可能想检查是否已正确检测到它:
import numpy
try: from StringIO import StringIO
except ImportError: from io import StringIO
foo = '16.72083152\t12.91868366\t14.37818919\n16.9504402\t7.81951173\t12.81342726\n'
fn = StringIO.StringIO(foo) #make a file object from the string
data = numpy.loadtxt(fn) #use loadtxt with default settings.
答案 2 :(得分:0)
我想知道使用tf.contrib.distribute
指定设备放置策略是否有效。
def main(unused_argv):
"""Code to load training folds data pickle or generate one if not present"""
strategy = tf.contrib.distribute.OneDeviceStrategy(device='/gpu:0')
config = tf.estimator.RunConfig(train_distribute=strategy)
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn2,
config=config,
model_dir="F:/python_machine_learning_codes/tmp/custom_age_adience_1")
......