映射火花数据帧

时间:2017-11-12 20:52:19

标签: scala apache-spark apache-spark-sql

使用Spark 2.x我正在使用数据帧。

val proposals = spark.read
  .option("header", true)
  .option("inferSchema", true)
  .option("delimiter", ";")
  .csv("/proposals.txt.gz")

proposals.printSchema()

工作正常并给出:

root
 |-- MARKETCODE: string (nullable = true)
 |-- REFDATE: string (nullable = true)
 |-- UPDTIME: string (nullable = true)
 |-- UPDTIMEMSEC: integer (nullable = true)
 |-- ENDTIME: string (nullable = true)
 |-- ENDTIMEMSEC: integer (nullable = true)
 |-- BONDCODE: string (nullable = true)

现在我想用毫秒计算一个时间,因此编写了一个函数:

def time2usecs( time:String, msec:Int )={
    val Array(hour,minute,seconds) = time.split(":").map( _.toInt )
    msec + seconds.toInt*1000 + minute.toInt*60*1000 + hour.toInt*60*60*1000
}
time2usecs( "08:13:44", 111 )


time2usecs: (time: String, msec: Int)Int
res90: Int = 29624111

这个谜题的最后一个平静点是:

proposals.withColumn( "utime",
  proposals.select("UPDTIME","UPDTIMEMSEC")
    .map( (t,tms) => time2usecs(t,tms) ))

但我无法弄清楚如何做df.select(column1, column2).map(...)部分。

2 个答案:

答案 0 :(得分:3)

在Spark中对数据帧列使用方法的常用方法是定义UDF(用户定义函数,有关详细信息,请参阅here)。对于你的情况:

import org.apache.spark.sql.functions.udf
import spark.implicits._

val time2usecs = udf((time: String, msec: Int) => {
  val Array(hour,minute,seconds) = time.split(":").map( _.toInt )
  msec + seconds.toInt*1000 + minute.toInt*60*1000 + hour.toInt*60*60*1000
})

val df2 = df.withColumn("utime", time2usecs($"UPDTIME", $"UPDTIMEMSEC"))
此处导入

spark.implicits._,以允许$功能使用col()简写。

答案 1 :(得分:2)

为什么不一直使用SQL?

import org.apache.spark.sql.Column
import org.apache.spark.sql.functions._

def time2usecs(time: Column, msec: Column) = {
  val bits  = split(time, ":")
  msec + bits(2).cast("int") * 1000 + bits(1).cast("int") * 60 * 1000 + 
  bits(0).cast("int") *60*60*1000
}

df.withColumn("ts", time2usecs(col(""UPDTIME"), col("UPDTIMEMSEC"))

使用您的代码,您必须:

proposals
  .select("UPDTIME","UPDTIMEMSEC")
  .as[(String, Int)]
  .map { case (t, s) => time2usecs(t, s) }