我想计算今年的年初至今(YTD)值,并将其与去年同期的熊猫进行比较。我的df看起来像这样:
import pandas as pd
import numpy as np
df = pd.DataFrame([[1,2,3],[1,2,1],[1,2,2],[2,2,2],[2,3,2],[2,4,2]],columns=["a","b","c"])
df = df.set_index("a")
df.groupby("a").mean()
df.groupby("a").std()
我对产品A的两个值是 YTD = 408,YTD SPLY = 328(2016年1月至8月,2015年1月至8月)。 当新的月份添加到df时,我希望公式计算Jan-Sep等等。
任何想法如何进行?
答案 0 :(得分:1)
不完全确定你想要什么,但看起来你想要获取每年的累积金额。
df[['A_cumsum', 'B_cumsum']] = df.resample('A', on='Month').transform('cumsum')
Month Product A Product B A_cumsum B_cumsum
0 2015-01-01 24 62 24 62
1 2015-02-01 46 24 70 86
2 2015-03-01 30 70 100 156
3 2015-04-01 26 51 126 207
4 2015-05-01 34 42 160 249
5 2015-06-01 45 35 205 284
6 2015-07-01 25 13 230 297
7 2015-08-01 98 95 328 392
8 2015-09-01 6 81 334 473
9 2015-10-01 93 38 427 511
10 2015-11-01 98 59 525 570
11 2015-12-01 98 1 623 571
12 2016-01-01 67 42 67 42
13 2016-02-01 72 34 139 76
14 2016-03-01 7 6 146 82
15 2016-04-01 19 24 165 106
16 2016-05-01 82 38 247 144
17 2016-06-01 15 79 262 223
18 2016-07-01 49 83 311 306
19 2016-08-01 97 56 408 362