Twitter如何从图像像素数据中提取有意义的主题颜色?

时间:2017-11-11 01:38:03

标签: css image twitter colors

首先让我澄清一下问题陈述。看看这条推文:

https://twitter.com/jungledragon/status/926894337761345538

接下来,在推文中点击图片本身。在出现的灯箱中,它下方的菜单栏采用基于图像本身中实际像素的有意义颜色。即使在这种压力测试中,这对于所有光像素都是一个困难的图像,它在选择整体颜色方面做得很好1)表示图像的内容2)黑暗/对比度足以在其上放置白色文本:

enter image description here

在我知道Twitter有这个之前,我同时实施了一个类似的系统。查看下面的预览:

enter image description here

屏幕截图中的示例是乐观的,因为有很多情况下背景太亮了。即使在我的截图中看到的看似积极的例子中,大部分时间它都没有通过AA或AAA对比检查。

我目前的做法:

  • 每张图片一次,JS运行计算平均颜色 图像中的所有像素。请注意,平均颜色不是 必然是有意义的颜色,例如在边缘的情况下 蜘蛛的平均值接近白色。
  • 我将RGB值存储在数据库中
  • 在渲染页面(服务器端)时,我动态设置了 使用公式
  • 的图像标题的背景颜色

我的公式是将RGB转换为HSL,然后特别处理S和L值。给它们一个缺口,使用最小/最大值来设置阈值。我尝试了无数的组合。

然而,这似乎是一场永无止境的斗争,因为色彩的黑暗和对比会受到人类感知的影响。

因此,我对Twitter似乎如何确定这一点有好奇心,特别是两个方面:

  1. 找到有意义的主题颜色(与平均颜色或主色不同)
  2. 以可识别的方式(色调)调整有意义的颜色,但对比度足以在其上放置浅色文字,同时至少通过AA对比度检查。
  3. 我已经四处寻找,但无法找到有关其实施的任何信息。谁知道他们这样做了?还是其他经过验证的方法来端到端地解决这个难题?

2 个答案:

答案 0 :(得分:2)

我看了一下Twitter的标记,看看我能找到什么,并且在浏览器的控制台中运行了一些代码之后,看起来Twitter在图像中的平面像素分布上采用了颜色平均值并对每个像素进行了缩放RGB通道的值为64及以下。这提供了一种非常快速的方法来为轻文本创建高对比度背景,同时仍保持合理的颜色匹配。据我所知,Twitter没有进行任何先进的主题颜色检测,但我不能肯定地说。

这是我用来验证这一理论的快速而肮脏的演示。图像周围出现的顶部和左侧边框最初显示Twitter使用的颜色。运行代码段后,将显示带有计算颜色的右下边框。 IE用户需要9+。

function processImage(img)
{
    var imageCanvas = new ImageCanvas(img);
    var tally = new PixelTally();

    for (var y = 0; y < imageCanvas.height; y += config.interval) {
        for (var x = 0; x < imageCanvas.width; x += config.interval) {
            tally.record(imageCanvas.getPixelColor(x, y));
        }
    }

    var average = new ColorAverage(tally);

    img.style.borderRightColor = average.toRGBStyleString();
    img.style.borderBottomColor = average.toRGBStyleString();
}

function ImageCanvas(img)
{
    var canvas = document.createElement('canvas');

    this.context2d = canvas.getContext('2d');
    this.width = canvas.width = img.naturalWidth;
    this.height = canvas.height = img.naturalHeight;

    this.context2d.drawImage(img, 0, 0, this.width, this.height);

    this.getPixelColor = function (x, y) {
        var pixel = this.context2d.getImageData(x, y, 1, 1).data;

        return { red: pixel[0], green: pixel[1], blue: pixel[2] };
    }
}

function PixelTally()
{
    this.totalPixelCount = 0;
    this.colorPixelCount = 0;
    this.red = 0;
    this.green = 0;
    this.blue = 0;
    this.luminosity = 0;

    this.record = function (colors) {
        this.luminosity += this.calculateLuminosity(colors);
        this.totalPixelCount++;

        if (this.isGreyscale(colors)) {
            return;
        }

        this.red += colors.red;
        this.green += colors.green;
        this.blue += colors.blue;

        this.colorPixelCount++;
    };

    this.getAverage = function (colorName) {
        return this[colorName] / this.colorPixelCount;
    };

    this.getLuminosityAverage = function () {
        return this.luminosity / this.totalPixelCount;
    }

    this.getNormalizingDenominator = function () {
        return Math.max(this.red, this.green, this.blue) / this.colorPixelCount;
    };

    this.calculateLuminosity = function (colors) {
        return (colors.red + colors.green + colors.blue) / 3;
    };

    this.isGreyscale = function (colors) {
        return Math.abs(colors.red - colors.green) < config.greyscaleDistance
            && Math.abs(colors.red - colors.blue) < config.greyscaleDistance;
    };
}

function ColorAverage(tally)
{
    var lightness = config.lightness;
    var normal = tally.getNormalizingDenominator();
    var luminosityAverage = tally.getLuminosityAverage();

    // We won't scale the channels up to 64 for darker images:
    if (luminosityAverage < lightness) {
        lightness = luminosityAverage;
    }

    this.red = (tally.getAverage('red') / normal) * lightness
    this.green = (tally.getAverage('green') / normal) * lightness
    this.blue = (tally.getAverage('blue') / normal) * lightness

    this.toRGBStyleString = function () {
        return 'rgb('
            + Math.round(this.red) + ','
            + Math.round(this.green) + ','
            + Math.round(this.blue) + ')';
    };
}

function Configuration()
{
    this.lightness = 64;
    this.interval = 100;
    this.greyscaleDistance = 15;
}

var config = new Configuration();
var indicator = document.getElementById('indicator');

document.addEventListener('DOMContentLoaded', function () {
    document.forms[0].addEventListener('submit', function (event) {
        event.preventDefault();

        config.lightness = Number(this.elements['lightness'].value);
        config.interval = Number(this.elements['interval'].value);
        config.greyscaleDistance = Number(this.elements['greyscale'].value);

        indicator.style.visibility = 'visible';

        setTimeout(function () {
            processImage(document.getElementById('image1'));
            processImage(document.getElementById('image2'));
            processImage(document.getElementById('image3'));
            processImage(document.getElementById('image4'));
            processImage(document.getElementById('image5'));

            indicator.style.visibility = 'hidden';
        }, 50);
    });
});
label { display: block; }
img { border-width: 20px; border-style: solid; width: 200px; height: 200px; }
#image1 { border-color: rgb(64, 54, 47) white white rgb(64, 54, 47); }
#image2 { border-color: rgb(46, 64, 17) white white rgb(46, 64, 17); }
#image3 { border-color: rgb(64, 59, 46) white white rgb(64, 59, 46); }
#image4 { border-color: rgb(36, 38, 20) white white rgb(36, 38, 20); }
#image5 { border-color: rgb(45, 53, 64) white white rgb(45, 53, 64); }
#indicator { visibility: hidden; }
<form id="configuration_form">
    <p>
        <label>Lightness:
            <input name="lightness" type="number" min="1" max="255" value="64">
        </label>
        <label>Pixel Sample Interval:
            <input name="interval" type="number" min="1" max="255" value="100">
            (Lower values are slower)
        </label>
        <label>Greyscale Distance:
            <input name="greyscale" type="number" min="1" max="255" value="15">
        </label>
        <button type="submit">Run</button> (Wait for images to load first!)
    </p>
    <p id="indicator">Running...this may take a few moments.</p>
</form>

<p>
    <img id="image1" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DNz9fNqWAAAtoGu.jpg:large">
    <img id="image2" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DOdX8AGXUAAYYmq.jpg:large">
    <img id="image3" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DOYp0HQX4AEWcnI.jpg:large">
    <img id="image4" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DOQm1NzXkAEwxG7.jpg:large">
    <img id="image5" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DN6gVnpXUAIxlxw.jpg:large">
</p>

在确定图像的主色时,代码会忽略白色,黑色和灰色像素,这样可以在降低色彩亮度的情况下提供更逼真的饱和度。对于大多数图像,计算出的颜色非常接近Twitter的原始颜色。

我们可以通过更改图像的哪些部分来计算平均颜色来改进此实验。上面的示例在整个图像中均匀地选择像素,但我们可以尝试仅使用图像边缘附近的像素 - 因此颜色更加无缝地混合 - 或者我们可以尝试从图像中心平均颜色值以突出主体。我将扩展代码,并在我有更多时间后更新此答案。

答案 1 :(得分:0)

可能会发现下面的示例有助于您想要完成的任务。

&#13;
&#13;
function getAverageColourAsRGB(img) {
  var canvas = document.createElement('canvas'),
    context = canvas.getContext && canvas.getContext('2d'),
    rgb = {
      r: 102,
      g: 102,
      b: 102
    },
    pixelInterval = 5,
    count = 0,
    i = -4,
    data, length;
  if (!context) {
    return rgb;
  }
  var height = canvas.height = img.naturalHeight || img.offsetHeight || img.height,
    width = canvas.width = img.naturalWidth || img.offsetWidth || img.width;
  context.drawImage(img, 0, 0);
  try {
    data = context.getImageData(0, 0, width, height);
  } catch (e) {
    console.error(e);
    return rgb;
  }
  data = data.data;
  length = data.length;
  while ((i += pixelInterval * 4) < length) {
    count++;
    rgb.r += data[i];
    rgb.g += data[i + 1];
    rgb.b += data[i + 2];
  }
  rgb.r = Math.floor(rgb.r / count);
  rgb.g = Math.floor(rgb.g / count);
  rgb.b = Math.floor(rgb.b / count);
  return rgb;
}

function getContrastYIQ(r, g, b) {
  var yiq = ((r * 299) + (g * 587) + (b * 114)) / 1000;
  return (yiq >= 128) ? '#000' : '#FFF';
}

function rgb2hex(rgb) {
  rgb = rgb.match(/^rgba?[\s+]?\([\s+]?(\d+)[\s+]?,[\s+]?(\d+)[\s+]?,[\s+]?(\d+)[\s+]?/i);
  return (rgb && rgb.length === 4) ? "#" +
    ("0" + parseInt(rgb[1], 10).toString(16)).slice(-2) +
    ("0" + parseInt(rgb[2], 10).toString(16)).slice(-2) +
    ("0" + parseInt(rgb[3], 10).toString(16)).slice(-2) : '';
}

function convertHex(hex) {
  hex = hex.replace('#', '');
  if (hex.length === 3) {
    hex = hex + hex;
  }
  r = parseInt(hex.substring(0, 2), 16);
  g = parseInt(hex.substring(2, 4), 16);
  b = parseInt(hex.substring(4, 6), 16);
  return [r, g, b];
}

function colorSubH(colorA, colorB) {
  rgbA = convertHex(colorA);
  rgbB = convertHex(colorB);
  c = [];
  for (i = 0; i < rgbA.length; i++) {
    c.push(parseInt((rgbA[i] + rgbB[i]) / 2));
  }
  return rgb2hex("rgb(" + c.join(",") + ")");
}
var myImg = document.getElementById("img1");
var color = getAverageColourAsRGB(myImg);
var colorArray = [color.r, color.g, color.b];
var bgColor = rgb2hex("rgb(" + colorArray.join(","));
var txtColor = getContrastYIQ(color.r, color.g, color.b)
var subHColor = colorSubH(txtColor, bgColor);
var footer = document.getElementsByClassName("imgFooter")[0];
footer.style.backgroundColor = bgColor;
footer.style.color = txtColor;
var span = footer.querySelector("span");
span.style.color = subHColor;
&#13;
.main {
  width: 25rem;
  height: 100%;
}

img {
  width: 100%;
  height: auto;
  margin-bottom: 0;
}

.main .imgFooter {
  position: relative;
  height: 2rem;
  display: block;
  color: #000;
  width: 23rem;
  bottom: 0;
  margin-top: -4rem;
  padding: 1rem;
}
&#13;
<div class="main">
  <img id="img1" src=""
  />
  <div class="imgFooter">
    Header
    <br>
    <span>
Sub-header
</span>

  </div>
</div>
</div>
&#13;
&#13;
&#13;