这已经是discussed to death了,但是我的具体例子正在逃避我,因为我认为我的弃牌不应该 care 是否由右到左或从左到右组成。这是2016年第1天Advent of Code的解决方案,归结为获取指令列表(向右/向左转,向前走x步),应用它们,并在{2004}之间给出taxicab-geometry距离最终和你开始的地方。
我写了一个apply
函数来处理这个旅程的一个步骤,它有签名:
data Direction = North | East | South | West deriving (Enum, Show)
type Location = (Int, Int)
type Instruction = String
apply :: Direction -> Location -> Instruction -> (Direction, Location)
假设它正确实现(因为我测试了它,它是。我将在折叠下面包含一个可运行的示例)。我注意到我可以使用折叠将其应用于整个指令列表,并且
(_, finalLocation) = foldr f (North, (0, 0)) instructions -- note the foldr.
where f = (\ins (d, loc) -> apply d loc ins)
使用右关联折叠在这里工作,但给了我错误的答案。当我用foldl
(和flip f
)重新运行它时,我得到了一个完全不同的答案,接受了代码的冒险,所以我承认折叠方向肯定是差异,我只是不知道为什么这是一个区别,因为在我看来,我的代码不应该关心折叠发生的方式。
为什么我错了?
module AdventOfCode where
-- split
import Data.List.Split (splitOn)
day1input :: String
day1input = "L4, R2, R4, L5, L3, L1, R4, R5, R1, R3, L3, L2, L2, R5, R1, L1, L2, \
\R2, R2, L5, R5, R5, L2, R1, R2, L2, L4, L1, R5, R2, R1, R1, L2, L3, \
\R2, L5, L186, L5, L3, R3, L5, R4, R2, L5, R1, R4, L1, L3, R3, R1, L1, \
\R4, R2, L1, L4, R5, L1, R50, L4, R3, R78, R4, R2, L4, R3, L4, R4, L1, \
\R5, L4, R1, L2, R3, L2, R5, R5, L4, L1, L2, R185, L5, R2, R1, L3, R4, \
\L5, R2, R4, L3, R4, L2, L5, R1, R2, L2, L1, L2, R2, L2, R1, L5, L3, L4, \
\L3, L4, L2, L5, L5, R2, L3, L4, R4, R4, R5, L4, L2, R4, L5, R3, R1, L1, \
\R3, L2, R2, R1, R5, L4, R5, L3, R2, R3, R1, R4, L4, R1, R3, L5, L1, L3, \
\R2, R1, R4, L4, R3, L3, R3, R2, L3, L3, R4, L2, R4, L3, L4, R5, R1, L1, \
\R5, R3, R1, R3, R4, L1, R4, R3, R1, L5, L5, L4, R4, R3, L2, R1, R5, L3, \
\R4, R5, L4, L5, R2"
day1Processed :: [String]
day1Processed = splitOn ", " day1input
data Direction = North | East | South | West deriving (Enum, Show)
type Location = (Int, Int)
-- |'apply' takes your current 'Direction' and 'Location', applies the instruction
-- and gives back a tuple of (newDirection, (new, location))
apply :: Direction -> Location -> String -> (Direction, Location)
apply d' loc (t:num') = (d, step d loc numsteps)
where d = turn d' t
numsteps = read num' :: Int
-- |'distanceBetween' returns the taxicab geometric distance between two 'Location's
distanceBetween :: Location -> Location -> Int
distanceBetween (x1, y1) (x2, y2) = (abs $ x1-x2) + (abs $ y1-y2)
-- |'turn' changes direction based on the received Char
turn :: Direction -> Char -> Direction
turn West 'R' = North
turn North 'L' = West
turn d 'R' = succ d
turn d 'L' = pred d
turn d _ = d
-- |'step' moves location based on current direction and number of steps
step :: Direction -> Location -> Int -> Location
step North (x, y) s = (x , y+s)
step East (x, y) s = (x+s, y)
step South (x, y) s = (x , y-s)
step West (x, y) s = (x-s, y)
wrongLocation :: Location
rightLocation :: Location
(_, wrongLocation) = foldr (\x (d, loc) -> apply d loc x) (North, (0, 0)) day1Processed
(_, rightLocation) = foldl (\(d, loc) x -> apply d loc x) (North, (0, 0)) day1Processed
wrongAnswer :: Int
rightAnswer :: Int
wrongAnswer = distanceBetween (0, 0) wrongLocation
rightAnswer = distanceBetween (0, 0) rightLocation
答案 0 :(得分:5)
根据评论,我会说你对foldl
和foldr
之间的区别感到困惑。我会试着在这里区分这些。让我们看一个最小的例子。
foldr f x [a, b, c] = a `f` (b `f` (c `f` x))
foldl g x [a, b, c] = ((x `g` a) `g` b) `g` c
这就是这些函数在包含三个元素的小型列表上扩展的方式。现在,我们假设g = flip f
并查看foldl
当时做了什么。
foldr f x [a, b, c] = a `f` (b `f` (c `f` x))
foldl (flip f) x [a, b, c] = c `f` (b `f` (a `f` x))
因此,当您执行foldl (flip f)
而不是foldr f
时,列表的顺序最终会被颠倒。
因此,你的初始断言foldl (flip f) === foldr f
一般都是假的,但我们最终会得到一个相当有趣的属性。假设我们正在使用的列表是有限的,似乎foldl (flip f) x === foldr f x . reverse