所以我开始尝试进入dplyr编程的精彩世界。我正在尝试编写一个接受data.frame,目标列和任意数量的分组列的函数(使用所有列的裸名称)。然后,该函数将基于目标列对数据进行分箱,并计算每个箱中的条目数。我想为原始data.frame()中存在的分组变量的每个组合保留一个单独的bin大小,所以我使用complete()和nesting()函数来执行此操作。这是我正在尝试做的一个例子以及我遇到的错误:
library(dplyr)
library(tidyr)
#Prepare test data
set.seed(42)
test_data =
data.frame(Gene_ID = rep(paste0("Gene.", 1:10), times=4),
Comparison = rep(c("WT_vs_Mut1", "WT_vs_Mut2"), each=10, times=2),
Test_method = rep(c("T-test", "MannWhitney"), each=20),
P_value = runif(40))
#Perform operation manually
test_data %>%
#Start by binning the data according to q-value
mutate(Probability.bin = cut(P_value,
breaks = c(-Inf, seq(0.1, 1, by=0.1), Inf),
labels = c(seq(0.0, 1.0, by=0.1)),
right = FALSE)) %>%
#Now summarize the results by bin.
count(Comparison, Test_method, Probability.bin) %>%
#Fill in any missing bins with 0 counts
complete(nesting(Comparison, Test_method), Probability.bin,
fill=list(n = 0))
#Create function that accepts bare column names
bin_by_p_value <- function(df,
pvalue_col, #Bare name of p-value column
...) { #Bare names of grouping columns
#"Quote" column names so they are ready for use below
pvalue_col_name <- enquo(pvalue_col)
group_by_cols <- quos(...)
#Perform the operation
df %>%
#Start by binning the data according to q-value
mutate(Probability.bin = cut(UQ(pvalue_col_name),
breaks = c(-Inf, seq(0.1, 1, by=0.1), Inf),
labels = c(seq(0.0, 1.0, by=0.1)),
right = FALSE)) %>%
#Now summarize the results by bin.
count(UQS(group_by_cols), Probability.bin) %>%
#Fill in any missing bins with 0 counts
complete(nesting(UQS(group_by_cols)), Probability.bin,
# complete(nesting(UQS(group_by_cols)), Probability.bin,
fill=list(n = 0))
}
#Use function to perform operation
test_data %>%
bin_by_p_value(P_value, Comparison, Test_method)
当我手动执行操作时,一切正常。当我使用该函数时,它会因此错误而失败:
overscope_eval_next(overscope,expr)出错: 对象'比较'未找到
我已将问题缩小到函数中的以下代码:
complete(nesting(UQS(group_by_cols)), Probability.bin...
如果我删除了对nesting()的调用,代码将在没有错误的情况下执行。但是,我想保持功能,我只使用原始数据中存在的分组变量的组合,然后获得所有可能的组合,所以我可以填写所有缺少的分档。基于错误名称和失败的地方,我的猜测是这是一个范围/环境问题,我真的应该在nesting()中为分组变量使用不同的环境,因为它包含在对complete()的调用中。但是,我已经足够dplyr编程,我不知道该怎么做。
我尝试通过将分组列合并为一个列,然后将该联合列用作complete()的输入来解决此问题。这让我可以按照我想要的方式执行complete()操作,同时避免使用nesting()函数。但是,当我想分回原始的分组列时,我遇到了麻烦,因为我不知道如何将一个quosures列表转换为一个字符向量(separate()的“into”参数所需)。以下是代码片段,用于说明我在说什么:
#Fill in any missing bins with 0 counts
unite(Merged_grouping_cols, UQS(group_by_cols), sep="*") %>%
complete(Merged_grouping_cols, Probability.bin,
fill=list(n = 0)) %>%
separate(Merged_grouping_cols, into=c("What goes here?"), sep="\\*")
以下是相关版本信息:R版本3.4.2(2017-09-28),tidyr_0.7.2,dplyr_0.7.4
我很感激任何变通方法,但我想知道我在做什么,这是以错误的方式摩擦complete()和嵌套()。
答案 0 :(得分:1)
{{}}
使用 curl-curly pvalue_col
。...
) 直接传递给 count
。ensyms
中使用 !!!
和 nesting
。bin_by_p_value <- function(df,
pvalue_col, #Bare name of p-value column
...) { #Bare names of grouping columns
#Perform the operation
df %>%
#Start by binning the data according to q-value
mutate(Probability.bin = cut({{pvalue_col}},
breaks = c(-Inf, seq(0.1, 1, by=0.1), Inf),
labels = c(seq(0.0, 1.0, by=0.1)),
right = FALSE)) %>%
#Now summarize the results by bin.
count(..., Probability.bin) %>%
#Fill in any missing bins with 0 counts
complete(nesting(!!!ensyms(...)), Probability.bin, fill=list(n = 0))
}
test_data %>% bin_by_p_value(P_value, Comparison, Test_method)
# A tibble: 44 x 4
# Comparison Test_method Probability.bin n
# <chr> <chr> <fct> <dbl>
# 1 WT_vs_Mut1 MannWhitney 0 1
# 2 WT_vs_Mut1 MannWhitney 0.1 1
# 3 WT_vs_Mut1 MannWhitney 0.2 0
# 4 WT_vs_Mut1 MannWhitney 0.3 1
# 5 WT_vs_Mut1 MannWhitney 0.4 1
# 6 WT_vs_Mut1 MannWhitney 0.5 1
# 7 WT_vs_Mut1 MannWhitney 0.6 0
# 8 WT_vs_Mut1 MannWhitney 0.7 0
# 9 WT_vs_Mut1 MannWhitney 0.8 1
#10 WT_vs_Mut1 MannWhitney 0.9 4
# … with 34 more rows
如果手动调用的输出存储在res
中,则测试输出。
identical(res, test_data %>% bin_by_p_value(P_value, Comparison, Test_method))
#[1] TRUE