使用unnest_tokens()对句子进行标记,忽略缩写

时间:2017-11-09 21:15:10

标签: r text tidytext

我使用优秀的tidytext包来标记几段中的句子。例如,我想采取以下段落:

  

"我完全相信达西先生没有任何缺陷。他自己拥有它而没有伪装。"

并将其标记为两个句子

  1. "我完全相信达西先生没有任何缺陷。"
  2. "他自己拥有它而没有伪装。"
  3. 但是,当我使用tidytext的默认句子标记符时,我会得到三个句子。

    代码

    df <- data_frame(Example_Text = c("I am perfectly convinced by it that Mr. Darcy has no defect. He owns it himself without disguise."))
    
    
    unnest_tokens(df, input = "Example_Text", output = "Sentence", token = "sentences")
    

    结果

    # A tibble: 3 x 1
                                  Sentence
                                    <chr>
    1 i am perfectly convinced by it that mr.
    2                    darcy has no defect.
    3    he owns it himself without disguise.
    

    使用tidytext标记句子的简单方法是什么,但不会遇到普通缩写的问题,例如&#34; Mr。&#34;或&#34; Dr。&#34;被解释为句子结尾?

2 个答案:

答案 0 :(得分:2)

你可以使用正则表达式作为分裂条件,但不能保证这包括所有常见的hororifics:

unnest_tokens(df, input = "Example_Text", output = "Sentence", token = "regex",
              pattern = "(?<!\\b\\p{L}r)\\.")

<强>结果:

# A tibble: 2 x 1
                                                     Sentence
                                                        <chr>
1 i am perfectly convinced by it that mr. darcy has no defect
2                         he owns it himself without disguise

您当然可以创建自己的常用标题列表,并根据该列表创建一个正则表达式:

titles =  c("Mr", "Dr", "Mrs", "Ms", "Sr", "Jr")
regex = paste0("(?<!\\b(", paste(titles, collapse = "|"), "))\\.")
# > regex
# [1] "(?<!\\b(Mr|Dr|Mrs|Ms|Sr|Jr))\\."

unnest_tokens(df, input = "Example_Text", output = "Sentence", token = "regex",
              pattern = regex)

答案 1 :(得分:2)

语料库 quanteda 在确定句子边界时对缩写有特殊处理。以下是使用语料库分割句子的方法:

library(dplyr)
library(corpus)
df <- data_frame(Example_Text = c("I am perfectly convinced by it that Mr. Darcy has no defect. He owns it himself without disguise."))

text_split(df$Example_Text, "sentences")
##   parent index text                                                         
## 1 1          1 I am perfectly convinced by it that Mr. Darcy has no defect. 
## 2 1          2 He owns it himself without disguise.

如果您想坚持使用unnest_tokens,但想要更详尽的英文缩写列表,可以按照@ useR的建议使用 corpus 缩写列表(大多数都是来自Common Locale Data Repository):

abbrevations_en
##  [1] "A."       "A.D."     "a.m."     "A.M."     "A.S."     "AA."       
##  [7] "AB."      "Abs."     "AD."      "Adj."     "Adv."     "Alt."    
## [13] "Approx."  "Apr."     "Aug."     "B."       "B.V."     "C."      
## [19] "C.F."     "C.O.D."   "Capt."    "Card."    "cf."      "Col."    
## [25] "Comm."    "Conn."    "Cont."    "D."       "D.A."     "D.C."    
## (etc., 155 total)