我还是R的新手,很多事情仍然难以执行。这里的社区非常有帮助!我还有另一个问题。 1.为每个组创建一个新观察值,它是某些变量的总和(或加权和) 2.为有时带有NA的变量创建加权和
我的数据集:
df = structure(list(ID = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 4L), ID_name = c("AA", "AA", "BB", "BB", "CC","CC", "DD","DD","DD"),
Volume = c(10L, 20L, 30L, 50L, 50L, 40L, 20L,
30L, 10L), Score= c(0.1L, 0.3L, 0.5L, NA, 0.6L, NA,
0.6L, 0.2L, 0.6L)).Names = c("ID", "ID_name","Volume","Score"), class = "data.frame", row.names = c(NA, -9L))
我想 1.为每个唯一ID创建一个新观察点,即ID 1,ID 2,ID 3和ID 4
2。这些新观察结果如下: ID ID_name体积分数(加权平均值) 1 AA 30(即10 + 20)(10 * 0.1 + 0.3 * 20)/(10 + 20)= 0.23 2 BB 80(30 + 50)(30 * 0.5)/30=0.5(分数计算中忽略NA行) 3 CC 90(50 + 40)(60 * 0.6)/60=0.6(分数计算中忽略NA行) 4 DD 60(20 + 30 + 10)(20 * 0.6 + 30 * 0.2 + 10 * 0.6)/60=0.4
我尝试了mutate功能,但这似乎不起作用。任何线索都将非常感激。 感谢
答案 0 :(得分:0)
library(dplyr)
df = data.frame(ID = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 4L),
ID_name = c("AA", "AA", "BB", "BB", "CC", "CC", "DD", "DD", "DD"),
Volume = c(10L, 20L, 30L, 50L, 50L, 40L, 20L, 30L, 10L),
Score = c(0.1, 0.3, 0.5, NA, 0.6, NA, 0.6, 0.2, 0.6))
df %>%
mutate(HasScore = ifelse(is.na(Score), 0, 1)) %>%
group_by(ID, ID_name) %>%
summarise(WA = sum(Volume*Score, na.rm = T)/sum(Volume*HasScore),
Volume = sum(Volume)) %>%
ungroup()
# # A tibble: 4 x 4
# ID ID_name WA Volume
# <int> <fctr> <dbl> <int>
# 1 1 AA 0.2333333 30
# 2 2 BB 0.5000000 80
# 3 3 CC 0.6000000 90
# 4 4 DD 0.4000000 60