GLMM与GL中的glmer问题:pwrssUpdate中的错误...减半无法减少pwrssUpdate中的偏差

时间:2017-11-09 05:34:46

标签: r glm lme4

这是从我的完整数据框中随机选择的数据:

canopy<-structure(list(Stage = structure(c(6L, 5L, 3L, 6L, 7L, 5L, 4L, 
7L, 2L, 7L, 5L, 1L, 1L, 4L, 3L, 6L, 5L, 7L, 4L, 4L), .Label = c("milpa", 
"robir", "jurup che", "pak che kor", "mehen che", "nu kux che", 
"tam che"), class = c("ordered", "factor")), ID = c(44L, 34L, 
18L, 64L, 54L, 59L, 28L, 51L, 11L, 56L, 33L, 1L, 7L, 25L, 58L, 
48L, 36L, 51L, 27L, 66L), Sample = c(4L, 2L, 2L, 10L, 6L, 9L, 
4L, 3L, 3L, 8L, 1L, 1L, 7L, 1L, 10L, 8L, 4L, 3L, 3L, 10L), Subsample = c(2L, 
3L, 4L, 3L, 2L, 1L, 3L, 2L, 4L, 3L, 1L, 3L, 2L, 4L, 1L, 1L, 3L, 
1L, 1L, 4L), Size..ha. = c(0.5, 0.5, 0.5, 0.5, 6, 0.5, 0.5, 0.25, 
0.5, 6, 1, 1, 0.5, 2, 1, 0.5, 1, 0.25, 0.5, 2), Avg.Subsample.Canopy = c(94.8, 
94.8, 97.92, 96.88, 97.14, 92.46, 93.24, 97.4, 25.64, 97.4, 94.8, 
33.7, 13.42, 98.18, 85.44, 96.36, 97.4, 95.58, 85.7, 92.2), dec = c(0.948, 
0.948, 0.9792, 0.9688, 0.9714, 0.9246, 0.9324, 0.974, 0.2564, 
0.974, 0.948, 0.337, 0.1342, 0.9818, 0.8544, 0.9636, 0.974, 0.9558, 
0.857, 0.922)), .Names = c("Stage", "ID", "Sample", "Subsample", 
"Size..ha.", "Avg.Subsample.Canopy", "dec"), row.names = c(693L, 
537L, 285L, 1017L, 853L, 929L, 441L, 805L, 173L, 889L, 513L, 
9L, 101L, 397L, 913L, 753L, 569L, 801L, 417L, 1053L), class = "data.frame")

我正在尝试将dec的GLMM编码为Stage和Size的函数。 GLMM是必要的,因为每行代表在较大的样本区域内测量的子样本。我也使用二项分布给出dec是比例数据。

我试过这个模型:

canopy.binomial.mod<-glmer(dec~Stage*Size..ha.+(1|Sample),family="binomial",data=canopy)
summary(canopy.binomial.mod)

但得到错误:

  

pwrssUpdate中的错误(pp,resp,tol = tolPwrss,GQmat = GQmat,compDev   = compDev,:( maxstephalfit)PIRLS步长减半未能减少pwrssUpdate中的偏差

我在网上看到这可能是需要扩展预测变量的结果,所以我试过了:

cs. <- function(x) scale(x,scale=TRUE,center=TRUE)    
canopy.binomial.mod<-glmer(dec~Stage*cs.(Size..ha.)+(1|Sample),family="binomial",data=canopy.rmna)
summary(canopy.binomial.mod)

这似乎没什么帮助。我也认为,由于预测变量太多,我可能会过多地询问模型并且它没有收敛,所以让我们删除Size变量,这对我来说不太重要。

canopy.binomial.mod<-glmer(dec~Stage+(1|Sample),family="binomial",data=canopy.rmna)
summary(canopy.binomial.mod)

仍然没有运气。任何想法如何解决这个问题?

0 个答案:

没有答案