我是一个绝对的R初学者,需要一些帮助,我的似然比测试用于我的单变量分析。这是代码:
#Univariate analysis for conscientiousness (categorical)
fit <- glm(BCS_Bin~Conscientiousness_cat,data=dat,family=binomial)
summary(fit)
#Likelihood ratio test
fit0<-glm(BCS_Bin~1, data=dat, family=binomial)
summary(fit0)
lrtest(fit, fit0)
结果是:
Call:
glm(formula = BCS_Bin ~ Conscientiousness_cat, family = binomial,
data = dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8847 -0.8847 -0.8439 1.5016 1.5527
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.84933 0.03461 -24.541 <2e-16 ***
Conscientiousness_catLow 0.11321 0.05526 2.049 0.0405 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7962.1 on 6439 degrees of freedom
Residual deviance: 7957.9 on 6438 degrees of freedom
(1963 observations deleted due to missingness)
AIC: 7961.9
Number of Fisher Scoring iterations: 4
和
Call:
glm(formula = BCS_Bin ~ 1, family = binomial, data = dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8524 -0.8524 -0.8524 1.5419 1.5419
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.82535 0.02379 -34.69 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10251 on 8337 degrees of freedom
Residual deviance: 10251 on 8337 degrees of freedom
(65 observations deleted due to missingness)
AIC: 10253
Number of Fisher Scoring iterations: 4
对于我的LRT:
Error in lrtest.default(fit, fit0) :
models were not all fitted to the same size of dataset
我知道这种情况正在发生,因为缺少不同数量的观察结果?这是因为它是来自大型调查问卷的数据,并且与结果变量(身体状况评分/ BCS)相比,通过评估我的预测变量(尽责性)的问题发生了更多的辍学。因此,我只是为BCS提供了比尽责更多的数据(例如,它也为我的许多其他变量产生了相同的错误)。
答案 0 :(得分:0)
为了运行似然比检验,只有截距的模型必须与包含Conscientiousness_cat
的模型相同。因此,您需要Conscientiousness_cat
没有缺失值的数据子集:
BCS_bin_subset = BCS_bin[complete.cases(BCS_bin[,"Conscientiousness_cat"]), ]
您可以在此数据子集上运行两个模型,并且似然比测试应该无误地运行。
在您的情况下,您也可以这样做:
BCS_bin_subset = BCS_bin[!is.na(BCS_bin$Conscientiousness_cat), ]
但是,如果您希望数据框的子集在多个变量中没有缺失值,那么complete.cases
很方便。
如果您要运行多个模型,那么更方便的另一个选项,但更复杂的是首先适合任何模型使用来自BCS_bin
的最大数量的变量(因为该模型将排除由于缺失而观察到的最大数量)然后使用update
函数将该模型更新为具有较少变量的模型。我们只需要确保update
每次都使用相同的观察,我们使用下面定义的包装函数。以下是使用内置mtcars
数据框的示例:
library(lmtest)
dat = mtcars
# Create some missing values in mtcars
dat[1, "wt"] = NA
dat[5, "cyl"] = NA
dat[7, "hp"] = NA
# Wrapper function to ensure the same observations are used for each
# updated model as were used in the first model
# From https://stackoverflow.com/a/37341927/496488
update_nested <- function(object, formula., ..., evaluate = TRUE){
update(object = object, formula. = formula., data = object$model, ..., evaluate = evaluate)
}
m1 = lm(mpg ~ wt + cyl + hp, data=dat)
m2 = update_nested(m1, . ~ . - wt) # Remove wt
m3 = update_nested(m1, . ~ . - cyl) # Remove cyl
m4 = update_nested(m1, . ~ . - wt - cyl) # Remove wt and cyl
m5 = update_nested(m1, . ~ . - wt - cyl - hp) # Remove all three variables (i.e., model with intercept only)
lrtest(m5,m4,m3,m2,m1)