我尝试使用multidplyr
来加快residuals
regression
的距离。我创建了一个符合function
模型的regression
来获取residuals
,除了数据之外,还有两个参数。
这里是function
:
func <- function(df,reg.mdl,mdl.fmla)
{
if(reg.mdl == "linear"){
df$resid <- lm(formula = mdl.fmla, data = df)$residuals
} else if(reg.mdl == "poisson"){
df$resid <- residuals(object = glm(formula = mdl.fmla,data = df,family = "poisson"),type='pearson')
}
return(df)
}
以下是我尝试multidplyr
方法的示例数据:
set.seed(1)
ds <- data.frame(group=c(rep("a",100), rep("b",100),rep("c",100)),sex=rep(sample(c("F","M"),100,replace=T),3),y=rpois(300,10))
model.formula <- as.formula("y ~ sex")
regression.model <- "poisson"
这是multidplyr
方法:
ds %>% partition(group) %>% cluster_library("tidyverse") %>%
cluster_assign_value("func", func) %>%
do(results = func(df=.,reg.mdl=regression.model,mdl.fmla=model.formula)) %>% collect() %>% .$results %>% bind_rows()
这会引发此错误:
Error in checkForRemoteErrors(lapply(cl, recvResult)) :
3 nodes produced errors; first error: object 'regression.model' not found
In addition: Warning message:
group_indices_.grouped_df ignores extra arguments
所以我想我将func
中的参数传递给do
的方式是错误的。
知道什么是正确的方法吗?
答案 0 :(得分:8)
群集在其环境中没有此类对象的事实导致的错误。因此,需要将变量分配给集群流程:
ds %>%
partition(group) %>%
cluster_library("tidyverse") %>%
cluster_assign_value("func", func) %>%
cluster_copy(regression.model) %>%
cluster_copy(model.formula) %>%
do(results = func(
df = .,
reg.mdl = regression.model,
mdl.fmla = model.formula
)) %>%
collect() %>%
.$results %>%
bind_rows()
或者另一种方式(我更喜欢在链之前设置集群):
CL <- makePSOCKcluster(3)
clusterEvalQ(cl = CL, library("tidyverse"))
clusterExport(cl = CL, list("func", "regression.model", "model.formula"))
ds %>%
partition(group, cluster = CL) %>%
do(results = func(
df = .,
reg.mdl = regression.model,
mdl.fmla = model.formula
)) %>%
collect() %>%
.$results %>%
bind_rows()
stopCluster(CL)