如何指定要省略哪一年?

时间:2017-11-08 18:54:39

标签: regression stata

我有2000-2016的数据,我正在尝试使用交互式假人估计以下回归。

xtset id
xtreg lnp i.year i.year#fp, fe vce(robust)

但是当我这样做时,由于共线性,Stata省略了2008:有没有办法指定哪一年被省略?

1 个答案:

答案 0 :(得分:1)

通常,您可以指定因子变量的省略级别(即 基本))(使用ib运算符(另请参见help fvvarlist)。

以下是使用Stata玩具数据集nlswork的可重现示例:

webuse nlswork, clear
xtset idcode

使用77作为基准年:

xtreg ln_wage ib77.year age, fe vce(robust)

Fixed-effects (within) regression               Number of obs     =     28,510
Group variable: idcode                          Number of groups  =      4,710

R-sq:                                           Obs per group:
     within  = 0.1060                                         min =          1
     between = 0.0914                                         avg =        6.1
     overall = 0.0805                                         max =         15

                                                F(15,4709)        =      69.49
corr(u_i, Xb)  = 0.0467                         Prob > F          =     0.0000

                             (Std. Err. adjusted for 4,710 clusters in idcode)
------------------------------------------------------------------------------
             |               Robust
     ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        year |
         68  |   -.108365   .1111117    -0.98   0.329    -.3261959    .1094659
         69  |  -.0335029   .0995142    -0.34   0.736    -.2285973    .1615915
         70  |  -.0604953   .0867605    -0.70   0.486    -.2305866    .1095959
         71  |  -.0218073   .0742761    -0.29   0.769    -.1674232    .1238087
         72  |  -.0226893   .0622792    -0.36   0.716    -.1447857    .0994071
         73  |  -.0203581    .049851    -0.41   0.683    -.1180894    .0773732
         75  |  -.0305043   .0259707    -1.17   0.240     -.081419    .0204104
         78  |   .0225868   .0147272     1.53   0.125    -.0062854    .0514591
         80  |   .0058999   .0381391     0.15   0.877    -.0688706    .0806704
         82  |   .0006801   .0622403     0.01   0.991    -.1213399    .1227001
         83  |   .0127622    .074435     0.17   0.864    -.1331653    .1586897
         85  |   .0381987   .0989316     0.39   0.699    -.1557535    .2321508
         87  |   .0298993   .1237839     0.24   0.809    -.2127751    .2725736
         88  |   .0716091   .1397635     0.51   0.608    -.2023927     .345611
             |
         age |   .0125992   .0123091     1.02   0.306    -.0115323    .0367308
       _cons |   1.312096   .3453967     3.80   0.000     .6349571    1.989235
-------------+----------------------------------------------------------------
     sigma_u |   .4058746
     sigma_e |  .30300411
         rho |  .64212421   (fraction of variance due to u_i)
------------------------------------------------------------------------------

使用80作为基准年:

xtreg ln_wage ib80.year age, fe vce(robust)

Fixed-effects (within) regression               Number of obs     =     28,510
Group variable: idcode                          Number of groups  =      4,710

R-sq:                                           Obs per group:
     within  = 0.1060                                         min =          1
     between = 0.0914                                         avg =        6.1
     overall = 0.0805                                         max =         15

                                                F(15,4709)        =      69.49
corr(u_i, Xb)  = 0.0467                         Prob > F          =     0.0000

                             (Std. Err. adjusted for 4,710 clusters in idcode)
------------------------------------------------------------------------------
             |               Robust
     ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        year |
         68  |  -.1142649   .1480678    -0.77   0.440    -.4045471    .1760172
         69  |  -.0394028    .136462    -0.29   0.773    -.3069323    .2281266
         70  |  -.0663953   .1237179    -0.54   0.592    -.3089402    .1761497
         71  |  -.0277072   .1112026    -0.25   0.803    -.2457164     .190302
         72  |  -.0285892   .0991208    -0.29   0.773    -.2229124     .165734
         73  |   -.026258   .0866489    -0.30   0.762    -.1961303    .1436142
         75  |  -.0364042   .0625743    -0.58   0.561    -.1590791    .0862706
         77  |  -.0058999   .0381391    -0.15   0.877    -.0806704    .0688706
         78  |   .0166869   .0258678     0.65   0.519    -.0340261    .0673999
         82  |  -.0052198   .0257713    -0.20   0.840    -.0557437    .0453041
         83  |   .0068623   .0378166     0.18   0.856    -.0672759    .0810005
         85  |   .0322987   .0620538     0.52   0.603    -.0893558    .1539533
         87  |   .0239993   .0868397     0.28   0.782    -.1462471    .1942457
         88  |   .0657092   .1028815     0.64   0.523    -.1359868    .2674052
             |
         age |   .0125992   .0123091     1.02   0.306    -.0115323    .0367308
       _cons |   1.317996   .3824809     3.45   0.001     .5681546    2.067838
-------------+----------------------------------------------------------------
     sigma_u |   .4058746
     sigma_e |  .30300411
         rho |  .64212421   (fraction of variance due to u_i)
------------------------------------------------------------------------------