我有一个带有林分标识,树种,高度和体积的数据框:
import pandas as pd
df=pd.DataFrame.from_items([('STAND_ID',[1,1,2,3,3,3]),('Species',['Conifer','Broadleaves','Conifer','Broadleaves','Conifer','Conifer']),
('Height',[20,19,13,24,25,18]),('Volume',[200,100,300,50,100,10])])
STAND_ID Species Height Volume
0 1 Conifer 20 200
1 1 Broadleaves 19 100
2 2 Conifer 13 300
3 3 Broadleaves 24 50
4 3 Conifer 25 100
5 3 Conifer 18 10
我想通过stand id进行groupby和unstack并计算体积加权平均高度,所以我尝试:
newdf=df.groupby(['STAND_ID','Species']).mean().unstack()
Height Volume
Species Broadleaves Conifer Broadleaves Conifer
STAND_ID
1 19.0 20.0 100.0 200.0
2 NaN 13.0 NaN 300.0
3 24.0 21.5 50.0 55.0
高度当然不是音量加权的意思。我怎么体积重量?对于STAND_ID 3和Conifer来说就像这样:
(25 * 100 + 18 * 10)/(100 + 10)= 24.4
答案 0 :(得分:4)
如果lambda函数混淆,则apply也可以与函数定义一起使用。 (并且还有一个函数numpy.average来计算加权平均值)
import numpy as np
def weighted_average(group):
weights = group['Volume']
height = group['Height']
return np.average(height,weights=weights)
df.groupby(['STAND_ID','Species']).apply(func = weighted_average).unstack()
答案 1 :(得分:2)
如果我理解正确,一种方法是使用groupby
执行apply
:
df
STAND_ID Species Height Volume
0 1 Conifer 20 200
1 1 Broadleaves 19 100
2 2 Conifer 13 300
3 3 Broadleaves 24 50
4 3 Conifer 25 100
5 3 Conifer 18 10
df.groupby(['STAND_ID','Species']).apply(lambda x: (x['Height'] * x['Volume'].div(x['Volume'].sum())).sum()).unstack()
Species Broadleaves Conifer
STAND_ID
1 19.0 20.000000
2 NaN 13.000000
3 24.0 24.363636